

Flood Risk Assessment & Drainage Strategy

Title	Stuart Avenue, Mansfield
Client	arc partnership
Location	Stuart Avenue, Mansfield, Nottinghamshire
Project number	22-0541
BIM reference	SAMN-BSP-XX-XX-T-W-0001-P01_Flood_Risk_Assessment
Date	6 APR 2023

Authorisation Sheet & Revisions Record

Project Number:	22-0541
Project Title:	Stuart Avenue, Mansfield
Client:	arc partnership
Location:	Stuart Avenue, Mansfield, Nottinghamshire
Document Reference:	SAMN-BSP-XX-XX-T-W-0001-P01_Flood_Risk_Assessment
Office Address:	BSP Consulting, 12 Oxford Street, Nottingham, NG1 5BG
Telephone No:	0345 413 4000

Rev:	Issue Date:	Description:	Prepared:	Checked:	Authorised:
P01	06/04/2023	Initial issue	SCB	TG	TG

SCB	Simon Bond	s.bond@bsp-consulting.co.uk
300	BSc (Hons) MSc MCIWEM	Senior Flood Risk Engineer
TG	Tony Goddard	t.goddard@bsp-consulting.co.uk
10	BEng (Hons) CEng MICE	Director

Contents

1.0	Introduction	. 1
1.1	Terms of Reference	. 1
1.2	Legislation & Guidance	1
2.0	Background Information	2
2.1	Site Details	. 2
2.2	Approach to the Assessment	3
3.0	Flood Risk Assessment	4
3.1	Development Description and Planning Context	4
3.2	Sequential and Exception Tests	4
3.3	Definition of Flood Hazard	. 5
3.4	Climate Change	10
3.5	Detailed Development Proposals	8
4.0	Flood Risk Management & Drainage Strategy	10
4.1	Surface Water Flood Risk Mitigation	10
4.2	Surface Water Drainage	10
4.3	Water Quality	15
4.4	Maintenance	17
4.5	Foul Water Drainage	17
5.0	Off-Site Impacts	18
6.0	Overland Flow & Flood Routing Considerations	18
7.0	Residual Risks	18
8.0	Recommendations	19

Appendix A	Topographical Survey
Appendix B	Proposed Site Plan
Appendix C	Severn Trent Water Correspondence & Sewer Records
Appendix D	Proposed Drainage Strategy Supporting Calculations

Executive Summary

Introduction	BSP Consulting has been commissioned by arc partnership to undertake a Flood Risk			
	Assessment and Drainage Strategy for new residential development at Stuart Avenue,			
	Mansfield, Nottinghamshire. This Flood Risk Assessment has been prepared in			
	accordance with the Technical Guidance to the National Planning Policy Framework.			
Existing Site	The site currently comprises largely of greenfield land, with a small portion of the site to			
Conditions	the north which comprising unused concrete hardstanding. The site is shown to comprise			
	a general fall in levels in a south-easterly direction, with a peak on-site level of 113.97m			
	AOD, down to a level of 103.30m AOD.			
Development	The proposals are to develop the 3.34ha site to comprise approximately 90 residential			
Description and	dwellings, together with car parking, access, landscaping and supporting infrastructure.			
Planning Context	In accordance with the NPPF, the project falls under the more vulnerable category in			
	terms of flood risk.			
Definition of Flood	The River Maun is a non-tidal EA Main River which flows in a north-easterly direction			
Hazard	approx. 970m to the east of the site. There are no other watercourses in close			
	proximity to the site.			
Probability	The EA Risk of Flooding from Rivers and Sea mapping indicates that the proposed			
(Rivers/fluvial)	development site has less than a 1 in 1,000 annual probability of flooding from rivers or			
	the sea. This map shows the indicative extent of the natural floodplain if there were no			
	flood defences or certain other manmade structures.			
Climate Change	The implications of climate change of up to 40% have been considered in this			
	assessment and mitigation measures have been determined accordingly.			
Development	The technical guidance to the NPPF states that developments of a more vulnerable			
Proposals	category such as the proposed residential use are appropriate within Flood Zone 1,			
	without being subject to the application of the Sequential Test.			
Off-Site Impacts	The proposed development surface water will discharge at reduced rates via the			
	provision of attenuation, with part of the development discharging to ground via			
	infiltration. Therefore, the development will bring about improvements to the surface			
	water regime in the area, and hence will not increase flooding adjacent to or downstream			
	of the site for the lifetime of the development.			

Residual Risks	The investigations carried out as part of this flood risk assessment and flood risk
Residual Misks	
	management measures proposed have demonstrated that the development will be safe,
	without increasing flood risk elsewhere.
Recommendations	 In accordance with best practice, external ground levels should comprise falls away
	from buildings and towards drainage features. The design of surface water drainage
	features should be such that any surface water flow paths within the site are
	maintained and/or accommodated while ensuring that buildings remain free from
	flooding without increasing risk elsewhere.
	• In accordance with best practice, external ground levels should comprise falls away
	from buildings and towards drainage features. The design of surface water drainage
	features should be such that any surface water flow paths within the site are
	maintained and/or accommodated while ensuring that buildings remain free from
	flooding without increasing risk elsewhere.
	 The proposed surface water drainage system should be designed to accommodate
	the 1 in 30-year rainfall event without any surface water flooding and should be
	capable of retaining the 1 in 100-year plus climate change (40%) storm event on
	site without flooding any buildings.
	 For the north of the proposed development it is proposed to discharge surface water
	runoff to ground via infiltration. To the centre and south of the site, where infiltration
	has been demonstrated to be infeasible, surface water runoff is proposed to
	discharge to the public surface water sewer pin Pump Hollow Lane.
	• It is proposed to restrict surface water runoff from the centre and south of the site to
	3.1I/s for all storms up to and including the 1 in 100-year (1% AEP) plus 40% climate
	change return periods. In order to achieve this discharge rate, an attenuation volume
	in the order of 478.9m ³ will need to be provided.
	• It is recommended that source control methods should be utilised where possible.
	These include the use of permeable paving for car parking spaces, private shared
	driveways and private pedestrian footways and the creation of bioretention gardens
	along the curtilage of access roads where appropriate.

1.0 Introduction

1.1 Terms of Reference

- 1.1.1 BSP Consulting has been commissioned by arc partnership to undertake a Flood Risk Assessment and Drainage Strategy for a new residential development at Stuart Avenue, Mansfield, Nottinghamshire.
- 1.1.2 This Flood Risk Assessment has been prepared in accordance with the Department for Communities and Local Government (DCLG) Planning Practice Guidance website section on 'Flood Risk and Coastal Change' and the Site-Specific Flood Risk Assessment Checklist.
- 1.1.3 This report has been produced on behalf of the Client, arc partnership, and no responsibility is accepted to any third party for all or any part. This report should not be relied upon or transferred to any other parties without the express written authorisation of BSP Consulting. If any unauthorised third party comes into possession of this report, they rely on it at their own risk and the authors owe them no duty of care or skill.

1.2 Legislation & Guidance

National Planning Policy Framework

- 1.2.1 The National Planning Policy Framework (NPPF) was published on 27 March 2012, with the latest update published in July 2021. This replaces Planning Policy Statement 25: Development and Flood Risk.
- 1.2.2 Planning Practice Guidance to the NPPF regarding Flood Risk and Coastal Change has been published and this site-specific Flood Risk Assessment is written in compliance with this guidance.
- 1.2.3 The NPPF, and supporting technical guidance, can be downloaded free of charge from the internet at the following link:

http://www.communities.gov.uk/publications/planningandbuilding/nppf

Flood & Water Management Act

1.2.4 The Flood & Water Management Act (F&WMA) was passed in 2010, and aims to reduce the flood risk associated with extreme weather, compounded by climate change. This act established the EA as responsible for flood risk related to Main Rivers. In this instance, Nottinghamshire County Council, as Lead Local Flood Authority (LLFA), are responsible for local sources of flood risk (that being from ordinary watercourses, surface water run-off and groundwater). As Local Planning Authority, Mansfield District Council has due regard for drainage and flood risk in accordance with local and national guidance and responses from statutory consultees.

2.0 Background Information

2.1 Site Details

2.1.1 Figure 2.1 below indicates the location of the site. A range of sources have been used to assess the local topography, local watercourses and current site use.

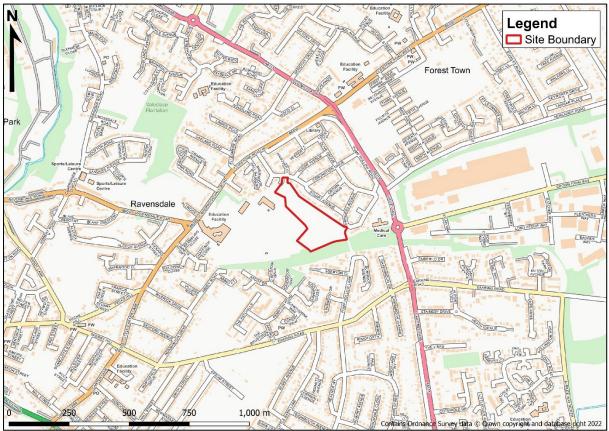


Figure 2.1 Stuart Avenue, Mansfield – Site Location Plan

- 2.1.2 The proposed development site is located to the east of Mansfield town centre, centred on OSNGR 455949E, 361515N, and occupies an area of approximately 3.34ha.
- 2.1.3 The site is bounded by Stuart Avenue to the north, existing residential developments along Stuart Avenue to the northeast, the end of Princess Avenue and start of Pump Hollow Lane to the southeast and Abbey Primary School and its associated playing fields to the west. To the south of the site is a former railway embankment; this embankment is now densely wooded and comprises a pedestrian footpath to the southeast of the site linking Pump Hollow Lane which is situated both to the north and to the south of the embankment.
- 2.1.4 The site currently comprises largely of greenfield land, with a small portion of the site to the north which comprising unused concrete hardstanding. A topographical survey of the site has been completed and is

included in **Appendix A**. The site is shown to comprise a general fall in levels in a south-easterly direction, with a peak on-site level of 113.97m AOD, down to a level of 103.30m AOD.

Table 2.1: Overall Catchment Context and Local Watercourse Classifications

Classification	Name	Description
Main Rivers	River Maun	The River Maun is a non-tidal EA Main River which flows in a north-easterly direction approx. 970m to the east of the site.
Ordinary Watercourses	N/A	There are no Ordinary Watercourses within close proximity to the site.
Manmade Watercourses	N/A	There are no manmade watercourses within close proximity to the site.

2.1.5 The locations of the above watercourses are indicated on Figure 2.1 above.

2.2 Approach to the Assessment

- 2.2.1 This study has been supplemented by information from the Environment Agency (EA), Severn Trent Water (STW) and additional information contained on the British Geological Society (BGS) website, the DEFRA MagicMap website and the Cranfield Soil and Agrifood Institute Soilscapes website.
- 2.2.2 This assessment seeks to draw together the relevant data information from these sources and to collate this with the findings of our investigations and discussions to assess the flood risk and drainage strategy for this site.

3.0 Flood Risk Assessment

3.1 Development Description and Planning Context

- 3.1.1 The development proposals are for the construction of approximately 90 residential dwellings, together with car parking, access, landscaping and supporting infrastructure. The proposed site plan is included in **Appendix B**.
- 3.1.2 The local area benefits from two Strategic Flood Risk Assessments (SFRA). These assessments are the Mansfield District Council SFRA (2008) and the Greater Nottingham SFRA (2017). Both SFRAs note the site to fall within Flood Zone 1.
- 3.1.3 In accordance with the NPPF, the proposed school car park and the residential dwellings fall under the **more vulnerable** category in terms of flood risk.

3.2 Sequential and Exception Tests

- 3.2.1 The Sequential Test is designed to steer development towards areas of lower flood risk and is required to be completed for development within Flood Zone 2 and 3. As the site is located within Flood Zone 1 the Sequential Test is not required.
- 3.2.2 The Exception Test is designed to require evidence of how flood risk will be managed on the proposed development site, ensuring that it is safe for its lifetime and will not increase flood risk elsewhere. Table 3.1 below indicates whether developments, based on their vulnerability classification, are permitted within each Flood Zone and whether the Exception Test is required. The NPPF states that developments of the more vulnerable category are suitable within Flood Zone 1 without the requirement of an Exception Test. In this case, this report, and particularly Section 4, will demonstrate that the development passes the Exception Test.

Vuln	d Risk erability sification	Essential Infrastructure	Water Compatible	Highly Vulnerable	More Vulnerable	Less Vulnerable
	Zone 1	\checkmark	\checkmark	√	\checkmark	\checkmark
Flood Zone	Zone 2	✓	✓	Exception Test Required	\checkmark	\checkmark
Flood	Zone 3a	Exception Test Required	~	×	Exception Test Required	\checkmark
	Zone 3b Functional Floodplain	Exception Test Required	~	×	X	×

Table 3.1: Flood Risk Vulnerability and Flood Zone Compatibility (Source: NPPF)

3.3 **Definition of Flood Hazard**

The potential sources of flooding in the vicinity of the site are as detailed below:

Historic Flooding

3.3.1 The Environment Agency's Historic Flood Map indicates that the development site has not flooded previously. The dataset shows the maximum extent of all individual recorded flood outlines that have occurred as a result of flooding from rivers, the sea and groundwater sources since records began 1946. The dataset does not account for flooding from other sources, such as sewer flooding or surface water flooding, nor is it exhaustive as it may not include all previous flooding incidents and does not provide information regarding event dates. However, the dataset does provide an insight into the potential for flooding from nearby sources.

The potential sources of flooding in the vicinity of the site are as detailed below:

Fluvial Flood Risk

3.3.2 The EA Risk of Flooding from Rivers and Sea mapping, shown below in Figure 3.1, indicates that the proposed development site has less than a 1 in 1,000 annual probability of flooding from Rivers and Sea. This map shows the indicative extent of the natural floodplain, if there were no flood defences or certain other manmade structures, such as surface water sewers, and channel improvements.

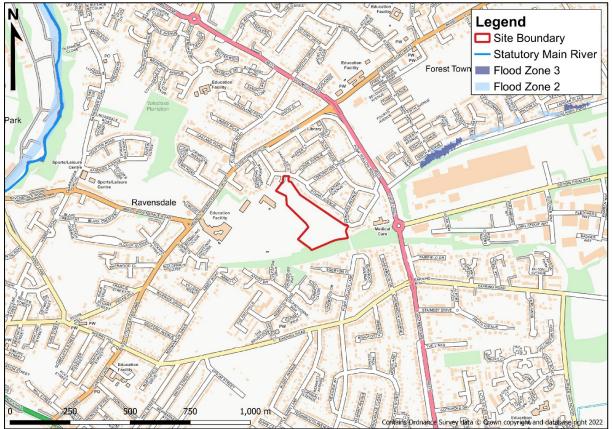


Figure 3.1 Stuart Avenue, Mansfield – Risk of Flooding from Rivers and Sea (Source: EA)

3.3.3 The only source of fluvial flooding locally is River Maun, an EA Main River which is located approximately 970m to the east of the site. However, given the scale of watercourse and its distance to the site, the River Maun does not present a risk of flooding to the site.

Tidal Flood Risk

3.3.4 The site is not within close proximity of any tidal watercourses.

Surface Water Flood Risk

3.3.5 Figure 3.2 below shows the Risk of Flooding from Surface Water mapping and indicates that the majority of the site is at very low risk (0.1% AEP) of surface water flooding. There is, however, a small surface water flood risk flow path indicated to run along the southern site boundary before spilling out of the site onto Pump Hollow Lane. This mapping does not include the public sewer network and is more representative of the natural catchment. Flood risk flow paths can also indicate exceedance flows in the event of sewer blockages. However, given that the only sewers running through the south of the site are rising mains heading in the opposite direction to the flow, it is unlikely that a blockage of local sewers would indeed result in the indicated flood flow path along the south of the site.

Figure 3.2 Stuart Avenue, Mansfield – Risk of Flooding from Surface Water (Source: EA)

3.3.6 The overall risk of surface water flooding to the site is considered to be low.

Flood Risk from Ground Water

- 3.3.7 The British Geological Survey's Geology of Britain mapping indicates that the site is situated upon bedrock geology consisting of Chester Formation – Sandstone, Pebbly (Gravelly). There are no records of superficial deposits at the site location. Chester Formation is generally classed as being highly productive aquifer.
- 3.3.8 The Environment Agency Aquifer Designation Map identifies the site as being situated on bedrock classed as Principal aquifer: geology that exhibit high permeability and/or provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale.
- 3.3.9 The Greater Nottingham SFRA (2017) includes mapping of areas that are susceptible to groundwater flooding on a 1km² grid scale. This mapping indicates that the site location is not susceptible to groundwater flooding.

3.3.10 Based on the information from the above sources, the site is considered to be at low risk of flooding from groundwater sources. Due to the nature of groundwater flooding, any risk associated with this source is likely to be heavily influenced by the local watercourses and primarily the River Maun. Given that the site is not within the natural floodplain of any nearby fluvial watercourses, the risk of groundwater flooding is expected to be minimal on-site.

Flood Risk from Sewers and Infrastructure

- 3.3.11 The local sewers are operated and maintained by Severn Trent Water (STW). STW sewer records indicate a number of public sewers located within the site boundary: firstly, a 225mm diameter combined sewer is shown to enter the site from the northwest, running adjacent to the boundary with Samworth Church Academy before turning and crossing the north of the site and exiting the at the rear of 38 Stuart Avenue; to the southeast of the site, a foul rising main (300mm diameter) and a separate combined rising main (300mm diameter) enter the site from Stuart Avenue and run in parallel across the south of the site, exiting to the southwest and continuing in a westerly direction. Outside of the site boundary, separate foul and surface water sewers are shown running in a northerly direction up Pump Hollow Lane, along the former railway embankment footpath and adjacent to the site's south-eastern boundary. Further combined sewers are located in Stuart Avenue and Crown Avenue to the north and east of the site running away from the site. STW have not raised any concerns regarding existing sewer flooding issues or capacity problems, though they have advised that the proposed development itself may have an adverse effect upon the local network, particularly in relation to a Combined Sewer Overflow (CSO) located in Pump Hollow Lane to the southeast of the site. Correspondence and copies of the sewer record plans from STW are included in Appendix C.
- 3.3.12 The EA's Flood Risk from Reservoir mapping indicates that the site lies outside of the predicted maximum flood extents in the unlikely event that all upstream large, raised reservoirs and dams simultaneously fail and release the water they hold; both on a 'dry day', if reservoir flooding were to occur when river levels are at normal levels, and on a 'wet day', should reservoir breach occur if a river is already experiencing an extreme natural flood. As such, the site is not considered to be at risk of flooding from reservoirs.
- 3.3.13 The site is not in close proximity to any Manmade Watercourses or wet process industry works.
- 3.3.14 The sewers and infrastructure flood risk source can therefore be discounted as a significant source of flood risk to the site.

3.4 Detailed Development Proposals

3.4.1 The proposed development and vulnerability classification are discussed in Section 3.1 above.

3.4.2 The technical guidance to the NPPF states that developments of a more vulnerable category such as the proposed school car parking and residential uses are appropriate within Flood Zone 1, without being subject to the application of the Sequential Test.

4.0 Flood Risk Management & Drainage Strategy

4.1 Surface Water Flood Risk Mitigation

- 4.1.1 The development proposals are for the construction of approximately 90 residential dwellings, together with car parking, access, landscaping and supporting infrastructure.
- 4.1.2 Although the proposed development will see the levelling of ground during construction, in accordance with best practice, external ground levels should comprise falls away from buildings and towards drainage features. The design of surface water drainage features should be such that any surface water flow paths within the site are maintained and/or accommodated while ensuring that buildings remain free from flooding without increasing risk elsewhere.

4.2 Surface Water Drainage

Climate Change

4.2.1 The implications of climate change should be taken into account in relation to surface water drainage. Guidance from the EA advises that the upper end allowances for both the 1 in 30-year (3.3% AEP) and 1 in 100-year (1% AEP) events should be assessed, with the development designed to ensure that there is no increase in flood risk elsewhere and the development will be safe from surface water flooding during the 1 in 100-year event when the upper end allowance for climate change is applied. In this instance, peak rainfall intensity for residential developments within the Idle and Torne Management Catchment are estimated to increase by 35% for the 3.3% AEP event and 40% for the 1% AEP event. Therefore, it is recommended that the upper end allowance of 40% is applied to design rainfall intensity to allow for the potential implications of climate change.

Sustainable Drainage Systems

- 4.2.2 Part H of the Building Regulations 2010 recommends that surface water run-off shall discharge to one of the following, listed in order of priority:
 - a) an adequate soakaway or some other adequate infiltration system, or where that is not reasonably practicable.
 - b) a watercourse, or, where that is not reasonably practicable.
 - c) a sewer.
- 4.2.3 It is necessary to identify the most appropriate method of controlling and discharging surface water. The design should seek to improve the local run-off profile by using systems that can either attenuate run-off and reduce peak flow rates or positively impact on the existing flood profile.

Infiltration Based Systems

- 4.2.4 The British Geological Survey's Geology of Britain mapping indicates that the site is situated upon bedrock geology consisting of Chester Formation Sandstone, Pebbly (Gravelly). There are no records of superficial deposits at the site location.
- 4.2.5 The Cranfield Soil and Agrifood Institute's Soilscapes mapping indicates the majority of the site to be situated on soils categorised as Soilscape 10: Freely draining slightly acid sandy soils.
- 4.2.6 A Site Investigation has been undertaken by Delta-Simons which included soakaway testing to BRE 365 specifications, conducted in December 2022, which comprised three infills at three different test locations. At locations SA101 (south of the site) and SA102 (centre of the site) the soakaway tests failed. However, at location SA103 to the north of the site, the testing was completed with rates of 2.5E-05m/s for the first infill, 1.8E⁻⁰⁵m/s for the second infill and 1.7E⁻⁰⁵m/s, resulting in a recommended infiltration rate for design of **1.7E⁻⁰⁵m/s**.
- 4.2.7 Based on the above information, it is likely that permeable ground conditions are present at the site but only within the north. As a result, infiltration-based systems should be used for the north of the site, but these techniques will not be possible for formal drainage to the centre and south of the site.

Open Watercourses

4.2.8 There are no open watercourses within close proximity to the site which could suitably receive surface water runoff from the proposed development.

Sewers

4.2.9 As infiltration is only feasible within the north of the site, and that there are no open watercourses locally that could receive runoff from the site, the only remaining option for the rest of the site is to discharge to the public surface water sewer located in Pump Hollow Lane. As STW have requested, any surface water connection to the public network will need to be downstream of the Combined Sewer Overflow (CSO at the proposed site access to Pump Hollow Lane.

SuDS Option Feasibility

4.2.10 A range of SuDS options have been considered for use within the context of the proposed development site, in-line with CIRIA guidance. Table 4.1 below provides a summary of the options considered for this site.

Table 4.1: Sustainable Urban Drainage Systems Options

SuDS Technique

SuDS Category		Viability	Explanation
	Infiltration	√	
	Trenches Infiltration Basins	√	Based upon the results of the soakaway testing completed on-site, formal infiltration methods will
Infiltration	Soakaways	√	only be possible for part of the development to the north of the site. This is to be achieved utilising
	Bioretention/Filter Strips	\checkmark	individual on-plot soakaways for residential rooftops.
	Bioretention/Rain Gardens	~	Filtration devices should be incorporated within soft landscaped areas across the site, adjacent to
Filtration	Filter Strips	~	impermeable roads and walkways where appropriate. These may need to be positively drained to the centre and south of the site. Public open spaces will also essentially act to harvest rainwater as opposed to resulting in runoff and these could potentially be further developed to include raingardens, which will specifically receive water from impermeable surfaces while also being maintenance free.
	Green Roofs	x	As the development will consist of residential dwellings with pitched rooftops green roofs will not be feasible.
Source Control	Rainwater Harvesting	X	Due to nature of the proposed development, the scope for rainwater harvesting is limited. Options such as water butts could be installed but their effectiveness will largely be dependent upon individual dwelling occupants. As such, other SuDS options are more favourable than rainwater harvesting.
	Pervious Pavements	~	Pervious paving should be utilised for the external ground level car parking spaces, pedestrian footways and private shared access driveways. This will serve to increase the rainfall-runoff response time and provide water quality benefits.
	Swales	~	Where possible, surface level conveyance features, such as swales, should be utilised rather than
Conveyance	Filter Drains	~	sewers to convey water through the development. This will be subject to a detailed site layout plan and
	Channels/Rills	\checkmark	detailed drainage design.
Retention/	Detention Basin	~	Where appropriate, the proposed development
Detention	Retention Pond	\checkmark	surface water runoff should be attenuated by a

Subsurface Storage	×	detention basin or retention pond before a restricted discharge to the public sewer network.
Wetlands	X	

Runoff Assessment

4.2.11 The ICP SUDS and IH124 (Flood Studies Report) methods have been used to calculate the surface water runoff from a small (<50ha) greenfield site (QBAR_{RURAL}), which are detailed below:

QBAR _{RURAL} = 0.00108 x (0.01 x AREA) ^{0.89} x SAAR ^{1.17} x SPR ^{2.17}	Where	AREA =	Area (ha)
		SAAR =	Standard Average Annual Rainfall (mm, 1941-1970)
		SPR =	Standard Percentage Runoff Coefficient

4.2.12 With a site area of 3.34ha and using Flood Studies Report values for SAAR (700mm) and Soil (0.150), this results in a QBAR_{RURAL} rate of 1.4l/s and discharge rates for the following return periods:

1 in 1-year	1.1l/s
1 in 30-year	2.7l/s
1 in 30-year + 35% Climate Change	3.65l/s
1 in 100-year	3.5l/s
1 in 100-year + 40% Climate Change	4.9l/s

4.2.13 The above greenfield runoff assessment is based upon the default Soil factor of 0.150. Based upon the infiltration testing completed by Delta-Simons, which demonstrates that infiltration is feasible to the north of the site, 0.150 is generally representative of the soils in this part of the site. However, the infiltration testing demonstrates that infiltration is infeasible in the centre and south of the site, though it is likely that percolation through the topsoil is still reasonably acceptable. As such, the above greenfield calculation method has been repeated with a modified Soil factor of 0.350 to be more closely representative of the ground conditions for the centre and south of the site, with the results as follows:

1 in 1-year	7.1l/s
QBAR	8.5l/s
1 in 30-year	16.7l/s
1 in 30-year + 35% Climate Change	22.55l/s

 1 in 100-year
 21.9l/s

 1 in 100-year + 40% Climate Change
 30.66l/s

4.2.14 Greenfield runoff calculations are provided in **Appendix D**.

Return Period Design

4.2.15 The proposed surface water drainage system should be designed to accommodate the 1 in 30-year rainfall event without any surface water flooding and should be capable of retaining the 1 in 100-year plus climate change (40%) storm event on site without flooding any buildings.

Discharge Rate

4.2.16 In accordance with DEFRA guidance (EA SCO30219), the peak surface water runoff rate for greenfield developments should be restricted to the pre-development discharge rate where reasonably practicable. Approximately 0.73ha of the developable area will discharge to ground via infiltration, with the remaining developable area of 1.23ha to the centre and south of the site unable to do so. Based upon a greenfield rate of 2.55l/s/ha, the 1.23ha developable area will need to be restricted to a rate of 3.14l/s.

Drainage Proposals – Main Strategy

- 4.2.17 The proposed development will comprise on an impermeable footprint of approximately 1.19ha (including a 10% allowance for urban creep). Approximately 0.44ha of the impermeable area is proposed to discharge to ground via infiltration, which will primarily comprise individual on-plot soakaways for each dwelling. Shared private driveways are proposed to comprise permeable paving and will also drain via infiltration. Adopted public highway will be required to drain to a soakaway chamber located within the highway curtilage. The remaining 0.75ha of impermeable area, to the centre and south of the site, will not be able to discharge via infiltration and will instead require a restricted discharge to the 675mm diameter public surface water sewer located in Pump Hollow Lane. In order to maintain the discharge rate of 3.11/s for all storms up to and including the 100-year return period with a 40% allowance for climate change, attenuation is required which provides in the order of 478.9m³ of surface water storage.
- 4.2.18 The required surface water attenuation volume is proposed to be provisioned by a surface level detention basin. Due to a Combined Sewer Overflow being located at the proposed site access onto Pump Hollow Lane, STW have advised that connection should be made to the surface water sewer downstream of the CSO.
- 4.2.19 It is recommended that parking spaces and private pedestrian footways are constructed from permeable paving where appropriate and bioretention features, such as raingardens and verges, are utilised where

possible. Both above-mentioned source control methods will act to increase the rainfall-runoff response time by intercepting rainfall at source while also providing improvements to water quality.

- 4.2.20 Drainage strategy calculations are provided in **Appendix D**.
- 4.2.21 The surface water discharge rate will be subject to agreement with STW and the new public sewer connections will be subject to a Section 106 (Water Industry Act 1991) application to STW.
- 4.2.22 The proposed surface water drainage strategy and associated surface water discharge rate will be subject to Nottinghamshire as Lead Local Flood Authority.

4.3 Water Quality

Simple Index Approach

- 4.3.1 In order to determine whether the proposed SuDS features for the development will be sufficient at removing pollutants from surface water runoff, the CIRIA SuDS Manual (2015) Simple Index Approach has been applied. This approach provides pollution hazard levels and indices to relevant pollutants based upon contributing hardstanding surfaces.
- 4.3.2 Table 4.2 below provides an extract of the land use types and pollutant indices from the CIRIA SuDS Manual which are relevant to the proposed development.

Table 4.2: Pollution hazard indices for different land use classifications (Source: CIRIA SuDS Manual 2015)

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Residential roofs	Very Low	0.2	0.2	0.05
Individual property driveways, residential car parks, low traffic roads and non-residential car parking with infrequent change	Low	0.5	0.4	0.4

4.3.3 Based upon the above, the worst case indices for the development are 0.5 (Total Suspended Solids), 0.4 (Metals) and 0.4 (Hydrocarbons). Table 4.3 below indicates the mitigation indices for different types of SuDS components discharging to groundwater, with only those relevant to the development that will infiltrate in the north of the site included. Under the Simple Index Approach, in order to suitably mitigate surface water pollutants, the total combined indices for any SuDS components will need to be greater than the worst case indices above. Where multiple SuDS components are proposed, the primary component is given its full indices, while subsequent component indices are applied with a factor of 50%.

Table 4.3: Indicative SuDS mitigation indices for discharges to groundwater (Source: CIRIA SuDS Manual 2015)

Mitigation Indices					
TSS	Metals	Hydrocarbons			
0.4	0.4	0.4			
0.7	0.6	0.7			
0.7	0.0	0.1			
0.8	0.8	0.8			
	0.4	TSS Metals 0.4 0.4 0.7 0.6			

4.3.5 Based upon the above, the proposed soakaways have mitigation indices of 0.4 (Total Suspended Solids),
0.4 (Metals) and 0.4 (Hydrocarbons), which is sufficient in the mitigation of surface water runoff pollution from the proposed development rooftops but will be insufficient alone for the treatment of runoff from

highways and driveways. As such, these areas will need to include permeable paving or bioretention features first before discharging via soakaway to ensure full mitigation.

4.3.6 Table 4.4 below indicates the mitigation indices for different types of SuDS components discharging to surface waters, with only those relevant to the development that cannot infiltrate in the centre and south of the site included.

Table 4.4: Indicative SuDS mitigation indices for discharges to surface waters (Source: CIRIA SuDS Manual 2015)

Type of SuDS		Mitigation Indices	
Component	TSS	Metals	Hydrocarbons
Detention Basin	0.5	0.5	0.6
Permeable Pavement	0.7	0.6	0.7
Bioretention System	0.8	0.8	0.8

4.3.8 Based upon the above, the proposed detention basin has mitigation indices of 0.5 (Total Suspended Solids), 0.5 (Metals) and 0.6 (Hydrocarbons), demonstrating that this component alone will be sufficient in mitigation surface water runoff pollution from the proposed development. Where further SuDS components are included in the development proposals these will offer even greater mitigation against surface water runoff pollution.

4.4 Maintenance

4.4.1 The proposed surface water drainage system will require routine maintenance to ensure it remains fully operational and effective. The proposed permeable paving and areas of bioretention within private shared areas will be maintained by a private management company and should be inspected and maintained regularly. The proposed attenuation basin should be built to adoptable standards and offered to the appropriate authority at the time of construction. Private residential features, such as permeable paved driveways/car parking and on-plot soakaways will fall under the responsibility of the appropriate plot owner.

4.5 **Foul Water Drainage**

4.5.1 Due to the natural fall of the site in a south-easterly direction towards Pump Hollow Lane, the proposed development will be able to discharge foul flows via gravity to the public sewer network located in Pump Hollow Lane. STW have raised concerns over a Combined Sewer Overflow (CSO) located at the corner

of Pump Hollow Lane and Princess Avenue and have requested that any foul connection be made to the 300mm diameter combined sewer downstream of the CSO at manhole 1401.

4.5.2 New foul public sewer connections will be subject to agreement with STW via a Section 106 (Water Industry Act 1991) application.

5.0 Off-Site Impacts

5.1.1 The proposed development surface water will discharge at reduced rates via the provision of attenuation, with part of the development discharging to ground via infiltration. Therefore, the development will bring about improvements to the surface water regime in the area, and hence will not increase flooding adjacent to or downstream of the site for the lifetime of the development.

6.0 Overland Flow & Flood Routing Considerations

- 6.1.1 The routing of potential surface water runoff, should the capacity of the proposed drainage system be exceeded, needs to be built into the layout of the site such that the residual risk of flooding from this element can be easily mitigated.
- 6.1.2 Careful attention will need to be paid to the proposed site levels to ensure that overland flow routes are maintained, and localised low spots are not created.

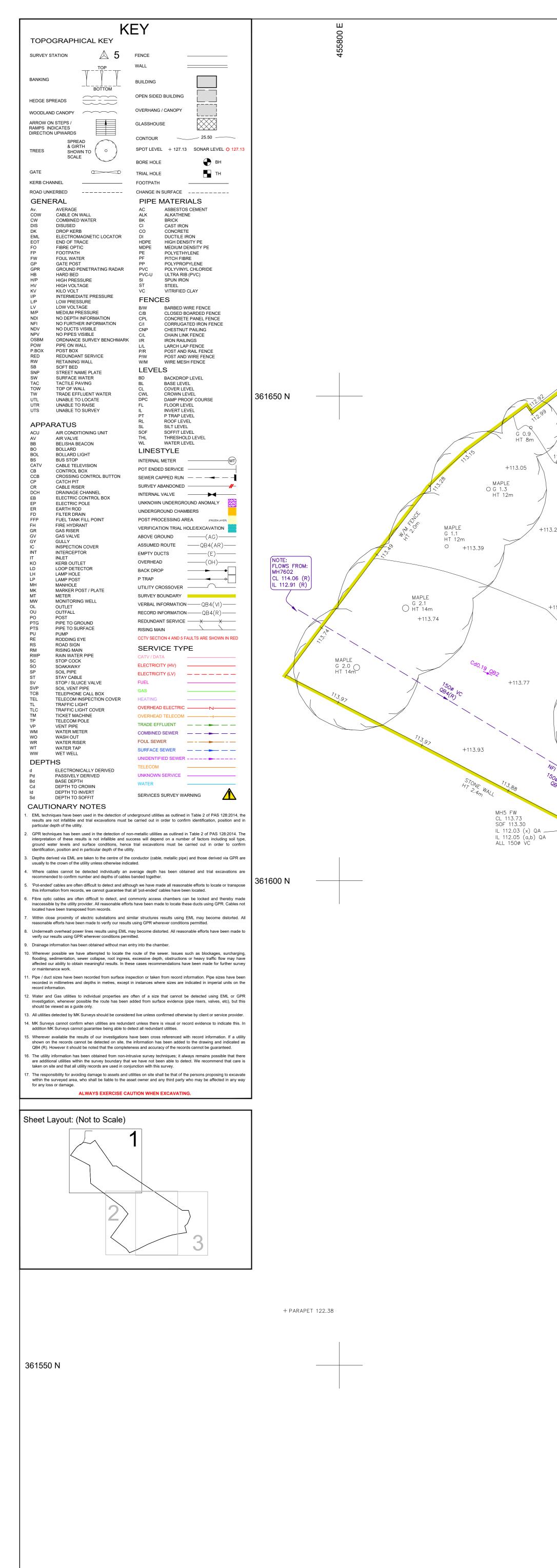
7.0 Residual Risks

7.1.1 The investigations carried out as part of this flood risk assessment and flood risk management measures proposed have demonstrated that the development will be safe, without increasing flood risk elsewhere.

8.0 Recommendations

The following recommendations are made to ensure flood risk at this site is minimised:

- In accordance with best practice, external ground levels should comprise falls away from buildings and towards drainage features. The design of surface water drainage features should be such that any surface water flow paths within the site are maintained and/or accommodated while ensuring that buildings remain free from flooding without increasing risk elsewhere.
- The proposed surface water drainage system should be designed to accommodate the 1 in 30-year rainfall event without any surface water flooding and should be capable of retaining the 1 in 100year plus climate change (40%) storm event on site without flooding any buildings.
- For the north of the proposed development it is proposed to discharge surface water runoff to ground via infiltration. To the centre and south of the site, where infiltration has been demonstrated to be infeasible, surface water runoff is proposed to discharge to the public surface water sewer pin Pump Hollow Lane.
- It is proposed to restrict surface water runoff from the centre and south of the site to 3.11/s for all storms up to and including the 1 in 100-year (1% AEP) plus 40% climate change return periods. In order to achieve this discharge rate, an attenuation volume in the order of 478.9m³ will need to be provided.
- It is recommended that source control methods should be utilised where possible. These include the use of permeable paving for car parking spaces, private shared driveways and private pedestrian footways and the creation of bioretention gardens along the curtilage of access roads where appropriate.


Disclaimer

We would note that all comments made in this report are based on the sources stated in Section 1.1. This report and its recommendations are intended for the use of arc partnership for the above site only.

Appendix A

Site Location Plan

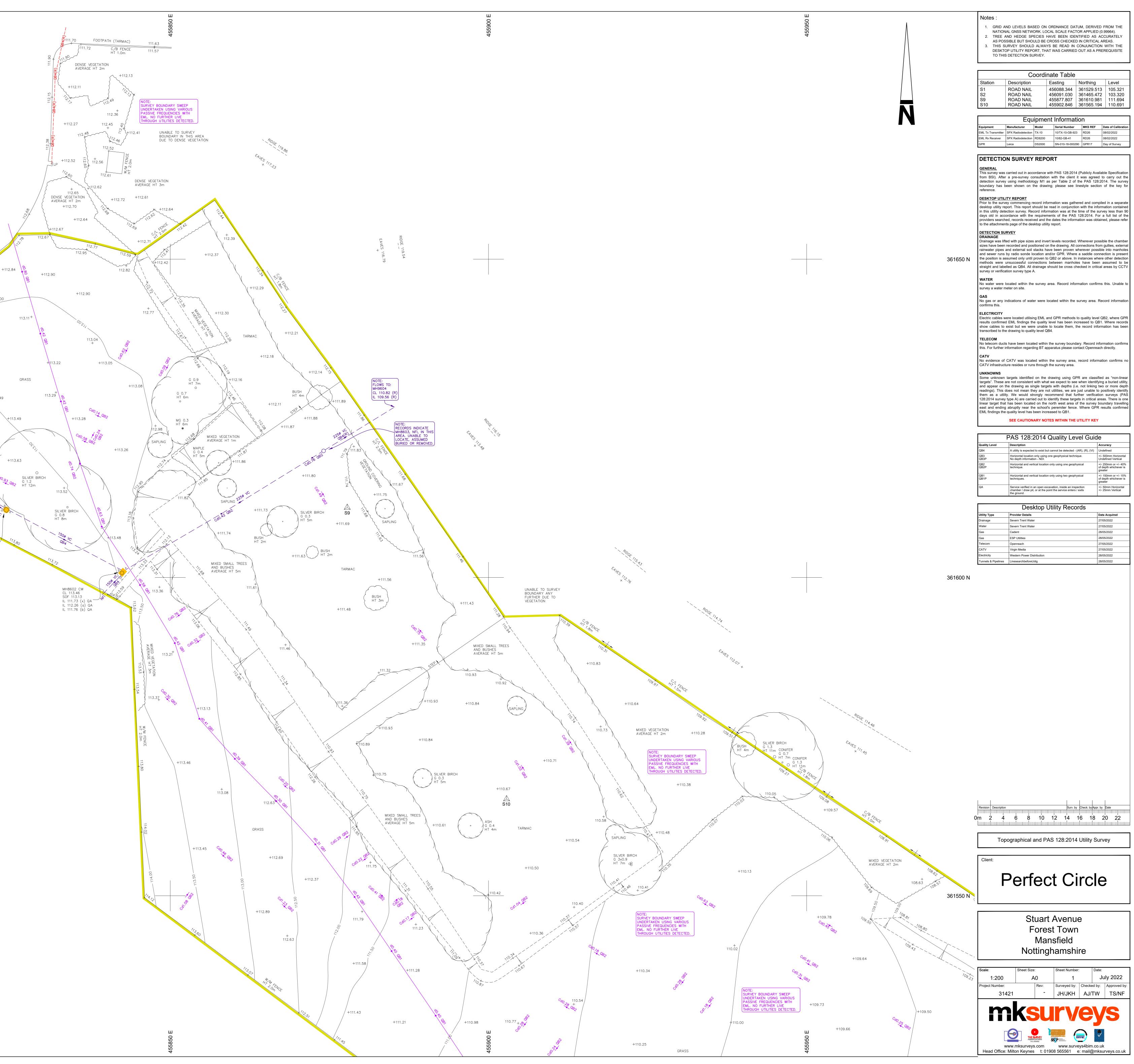
+112.84

113.11+

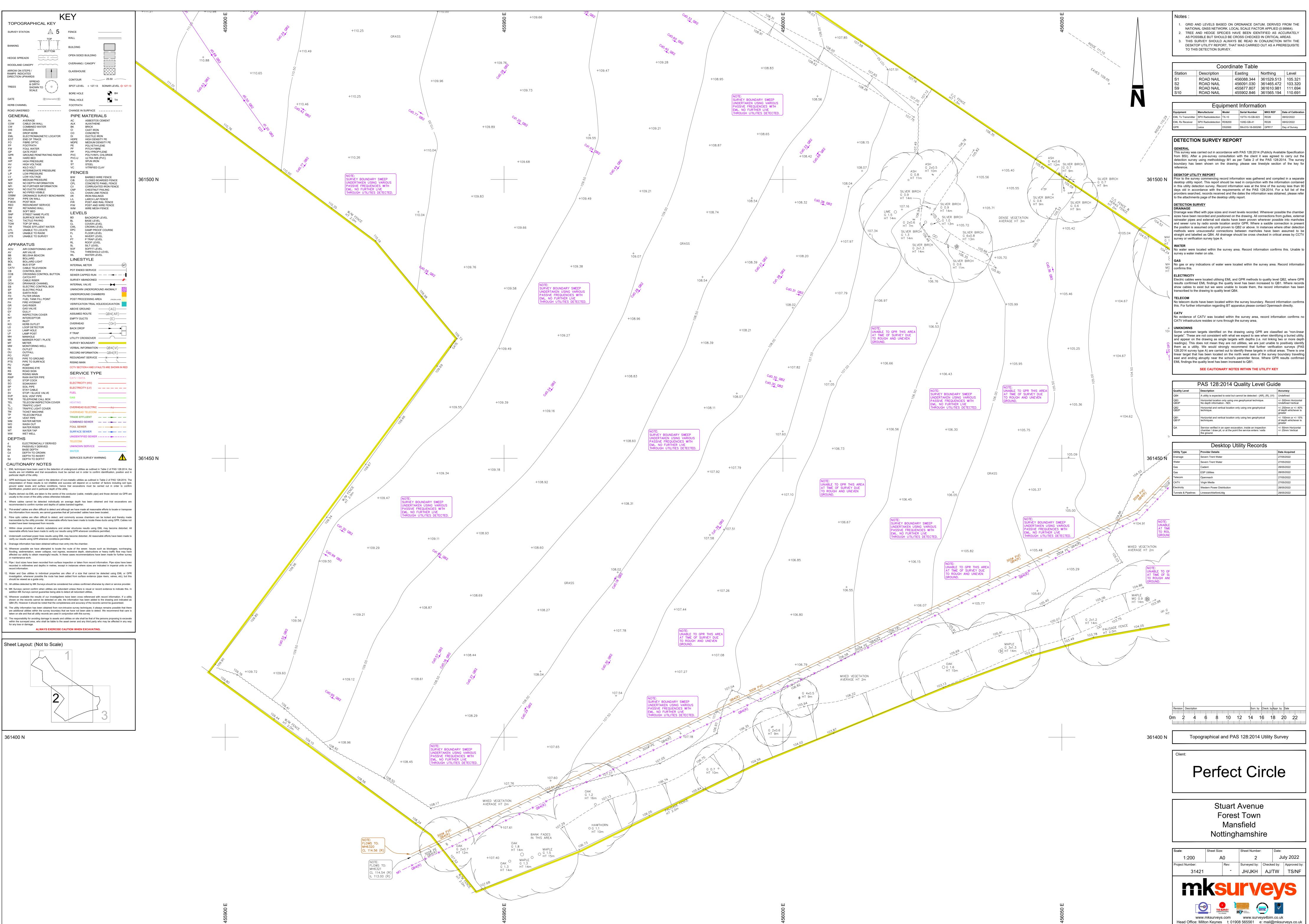
GRASS

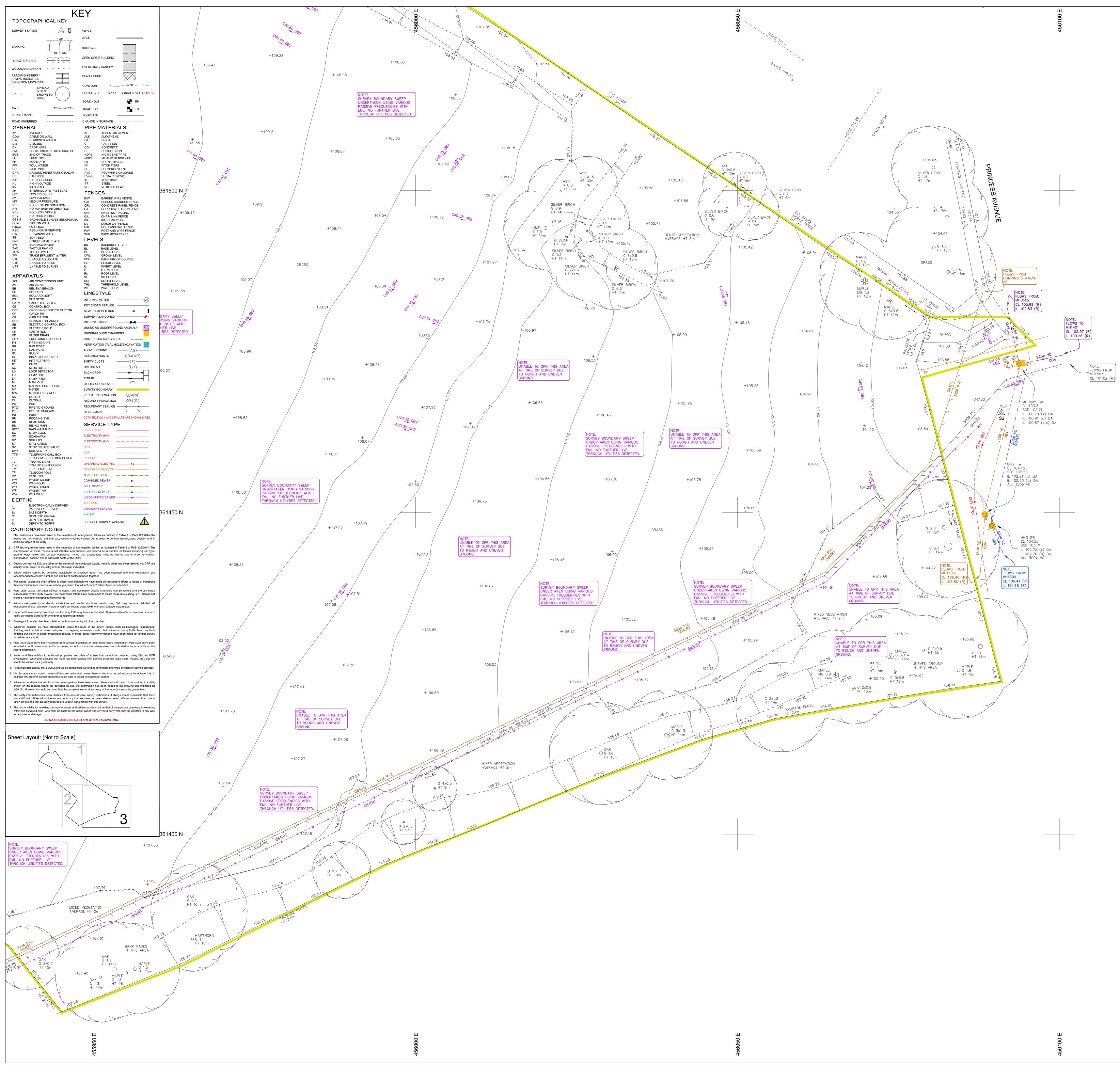
+113.63

113.00


4

+113.21


+113.49


+113.05

+113.77

	C	oordin	at	e Table				
Station	Description		Ea	sting	Ν	orthing	Level	
S1	ROAD NAIL							
S2	ROAD NAIL		456091.030 361465			61465.472		
S9 S10	ROAD NAIL					61610.981 61565.194		
010			чJ	0002.040	5	51000.184	110.031	
	Equipment Information							
Equipment	Manufacturer	Model		Serial Number		MKS REF	Date of Calibratio	
EML Tx Transmitter	SPX Radiodetection	TX-10		10/TX-10-GB-92	3	RD26	08/02/2022	
EML Rx Receiver	SPX Radiodetection	RD8200		10/82-GB-41		RD26	08/02/2022	
GPR	Leica	DS2000		SN-010-18-0002	90	GPR17	Day of Survey	
from BSI). After detection survey boundary has be reference. DESKTOP UTIL Prior to the surv desktop utility re in this utility dete days old in acc providers search to the attachmer DETECTION SU DRAINAGE Drainage was liff sizes have been rainwater pipes and sewer runs the position is as methods were straight and labe survey or verifica WATER No water were survey a water n GAS	ey commencing report. This report section survey. Recordance with the led, records received, records received, records received sector survey that page of the destructed with pipe sizes recorded and pose and external soil by radio sonde lessumed only until unsuccessful con elled as QB4. All cation survey type A	ecord information and inver- ecord information and information and inver- requirema- red and the sktop utility and inver- stacks have becation an proven to nections drainage s A.	rma rma rea mati e di y re d/o QB bet hou	ith the client er Table 2 of please see I din conjunction ion was gath d in conjunction ion was at the s of the PAS ates the inform port. vels recorded. e drawing. All of been proven v r GPR. Where 2 or above. In ween manhol ild be cross client . Record infor	it v the ine: ere on v tim 12 nation whe es necl	vas agreed PAS 128:2 style section d and compi- vith the infor ne of the sur 8:2014. For on was obtain herever possib saddle conn stances when have been ked in critica	to carry out th 014. The surve of the key for led in a separat mation containe vey less than 9 a full list of th ned, please refer ible the chamber n gullies, externa le into manhole ection is preser e other detectio assumed to b I areas by CCT s this. Unable t	
results confirmer show cables to transcribed to the TELECOM No telecom duct this. For further i	vere located utilisin d EML findings th exist but we wer e drawing to qualit s have been locat nformation regard	e quality l e unable y level QE ed within	leve to 34. the	el has been in locate them, t survey bound	cre he ary	ased to QB1 record infor	 Where record mation has bee rmation confirm 	
CATV infrastruct UNKNOWNS Some unknown targets". These a and appear on t readings). This of them as a utili 128:2014 survey	CATV was locat ure resides or run targets identified are not consistent the drawing as sin does not mean th ty. We would stur type A) are carried t has been locate	on the c with what ngle targe ey are no rongly rec ed out to id	the drav t we t ut com den	survey area. ving using GF expect to see vith depths (i. illities, we are mend that fu tify these targ	PR e wl e. r jus irthe ets	are classifie nen identifyir not linking tw t unable to p er verificatio in critical are	d as "non-linea ng a buried utility o or more dept positively identif n surveys (PA pas. There is on	
	g abruptly near the quality level has been see CAUTION	been incre ARY NOT	ES	ed to QB1. WITHIN THE	UT	ILITY KEY		
Quality Level	PAS 128:2	2014 (يرا	Lanty Le	ve			
QB4	A utility is expected	d to exist but	can	not be detected -	(AR		ndefined	
QB3 QB3P	Horizontal location No depth informati	only using o on - NDI	one ç	eophysical techn	ique		- 500mm Horizontal ndefined Vertical	
QB2	Horizontal and ver		only	using one geoph	ysic	al +/-	- 250mm or +/- 40%	
QB2P	technique.					of	depth whichever is eater	
QB1 QB1P	Horizontal and ver techniques.	tical location	only	vusing two geoph	ysica	of	- 150mm or +/- 15% depth whichever is	
QA	Service verified in	an open ever	avet	ion, inside an incr	ecti	-	eater - 50mm Horizontal	
~ .	chamber / draw pit the ground.						- 30mm Horizontal - 25mm Vertical	
		-4	1					
		ktop L	Jti	lity Reco	orc			
Utility Type	Provider Details						te Acquired	
Drainage Water	Severn Trent Wate						/05/2022	
Water Gas	Severn Trent Wate	1					/05/2022	
Gas	ESP Utilities						/05/2022	
Telecom	Openreach						/05/2022	
CATV	Virgin Media						/05/2022	
Electricity	Western Power Dis	stribution					/05/2022	
Tunnels & Pipelines	LinesearchbeforeU	ldig				28	/05/2022	
			_		_			

Notes :

- GRID AND LEVELS BASED ON ORDNANCE DATUM, DERIVED FROM THE NATIONAL GNSS NETWORK. LOCAL SCALE FACTOR APPLIED (0.99964). 2. TREE AND HEDGE SPECIES HAVE BEEN IDENTIFIED AS ACCURATELY AS POSSIBLE BUT SHOULD BE CROSS CHECKED IN CRITICAL AREAS. . THIS SURVEY SHOULD ALWAYS BE READ IN CONJUNCTION WITH THE
- DESKTOP UTILITY REPORT, THAT WAS CARRIED OUT AS A PREREQUISITE TO THIS DETECTION SURVEY.

			·					
	1		te Table		r			
Station	Description		asting	Northing				
S1 S2	ROAD NAIL		56088.344 56091.030	361529.5 361465.4		105.321 103.320		
S9	ROAD NAIL		5877.807	361610.9		111.694		
S10	ROAD NAIL		5902.846	361565.1		110.691		
	Equip	ment	Information	tion				
Equipment	Manufacturer Mo	odel	Serial Number	MKS REF	Da	te of Calibrati		
EML Tx Transmitter		-10	10/TX-10-GB-92			/02/2022		
EML Rx Receiver		08200	10/82-GB-41	RD26		/02/2022		
GPR	Leica DS	\$2000	SN-010-18-0002	90 GPR17	Da	y of Survey		
DETEOTIC	ON SURVEY R		.					
GENERAL This survey was	s carried out in accord	ance with	PAS 128:201					
detection surve	been shown on the	M1 as p	er Table 2 of	the PAS 12	8:2014	1. The surve		
DESKTOP UTI								
	vey commencing reco eport. This report sho							
in this utility de days old in ac providers searc	tection survey. Record cordance with the re- hed, records received nts page of the deskto	d informa quiremen and the c	tion was at the ts of the PAS lates the inform	e time of the 128:2014. F	survey For a f	less than full list of t		
		-p sunty ft						
DETECTION SU DRAINAGE								
	fted with pipe sizes an n recorded and positio							
rainwater pipes	and external soil sta	cks have	been proven	wherever pos	sible i	nto manhol		
	s by radio sonde locat assumed only until pro					•		
methods were	unsuccessful connect	ctions be	tween manho	les have be	en ass	sumed to		
, v	elled as QB4. All drai ation survey type A.	nage sno	uia de cross c	necked in crit	icai an	eas by CC		
WATER No water were	located within the su	urvey are	a. Record info	rmation confi	irms th	iis. Unable		
survey a water	meter on site.							
GAS	indications of water y	vere loca	ted within the	survey area	Reco	rd informati		
confirms this.	No gas or any indications of water were located within the survey area. Record information confirms this.							
results confirme show cables to	were located utilising l ed EML findings the o exist but we were u ne drawing to quality le	quality lev inable to	el has been ir locate them,	ncreased to C	QB1. W	Vhere recor		
	ts have been located information regarding				Record information confirn t Openreach directly.			
	No evidence of CATV was located within the survey area, record information confirms n							
	CATV infrastructure resides or runs through the survey area.							
Some unknown	UNKNOWNS Some unknown targets identified on the drawing using GPR are classified as "non-linear							
	targets". These are not consistent with what we expect to see when identifying a buried utility and appear on the drawing as single targets with depths (i.e. not linking two or more dept							
readings). This	readings). This does not mean they are not utilities, we are just unable to positively identify							
128:2014 surve	them as a utility. We would strongly recommend that further verification surveys (PAS 128:2014 survey type A) are carried out to identify these targets in critical areas. There is one							
	at has been located o g abruptly near the s							
	e quality level has bee	•						
	SEE CAUTIONAR	Y NOTES	WITHIN THE		Y			
	PAS 128:20)14 Q	uality Le	vel Guio	le			
Quality Level	Description		-		Accur	асу		
QB4	A utility is expected to				Undefi			
QB3 QB3P	Horizontal location only No depth information -		geophysical techr	nique.		0mm Horizonta ned Vertical		
QB2 QB2P	Horizontal and vertical technique.	location on	ly using one geopl	nysical		0mm or +/- 40% th whichever is		
					greate	r		
QB1 QB1P	Horizontal and vertical techniques.	location on	iy using two geoph	iysical	of dept	0mm or +/- 15% th whichever is r		
QA	Service verified in an c					nm Horizontal		
	chamber / draw pit, or the ground.					nm Vertical		
	Deskt	op Ut	ility Reco	ords				
Utility Type	Provider Details				Date A	Acquired		
Drainage	Severn Trent Water				27/05/2			
Water	Severn Trent Water				27/05/			
Gas Gas	Cadent ESP Utilities				28/05/2			
Telecom	Openreach				27/05/2			
CATV	Virgin Media				27/05/2			

Virgin Media

nels & Pipelines LinesearchbeforeUdig

Western Power Distribution

28/05/2022 28/05/2022

361400 N	Revision		68 	1 [′] 0 [·]		Check. by App 	11111 2	Date
		Topogra	aphical a	and PAS	6 128:2014	Utility S	urv	еу
	Clien	nt.						
			erf	ec	t Ci	rcl	е	•
			St	uart	Avenue	Э		
			F	ores	t Town			
				Man	sfield			
			Not	ttingh	namshi	re		
			1		1			
	Scale:	1:200	Sheet Size	»: \O	Sheet Number	: Da	ate: Ju	ly 2022
		Number:		Rev:	Surveyed by:	Checked b		Approved by:
		31421		-	JH/JKH	AJ/TV	V	TS/NF
		m		SU B		e		'S

www.mksurveys.com www.surveys4bim.co.uk Head Office: Milton Keynes t: 01908 565561 e: mail@mksurveys.co.uk

Appendix B

Proposed Site Plan

3 Bed Detached with Garage	8
3 Bed Semi-Detached with Garage	36
2 Bed Semi-Detached	8
Total	52

Appendix C

Severn Trent Water Correspondence & Sewer Records

26th January 2023

BSP Consulting 12 Oxford Street Nottingham NG1 5BG SEVERN

Severn Trent Water Ltd Oxley Moor Road Wolverhampton WV9 5HN

Tel: 07976 449091 <u>www.stwater.co.uk</u> network.solutions@severntrent.co.uk

Contact: Pierce Meguer

Reference: 1071487

FAO: s.bond@bsp-consulting.co.uk

Dear Simon,

Proposed development: 90 residential properties at land North of Abbey Primary School, Stuart Avenue, Mansfield, Nottinghamshire

X: 455938 / Y: 361527

I refer to your 'Development Enquiry Request' in respect of the above site. Please find enclosed the sewer records that are included in the fee together with the Supplementary Guidance Notes which refer to surface water disposal from development sites.

Public Sewers in Site – Required Protection

Having viewed our statutory sewer records, they demonstrate the following sewers passing through the site, with associated protection/no build zones:

- The 300mm pressurised combined water sewer within the site requires a 15-metre easement across it, 5 metres from the centreline of the pipe.
- The 300mm pressurised foul water sewer within the site requires a 10-metre easement across it, 5 metres from the centreline of the pipe.
- The 225mm combined water sewer within the site requires a 6-metre easement across it, 3 metres from the centreline of the pipe.

Due to the strategic importance of the sewer a diversion or build over/ close too applications will not be considered under any circumstance. If the full easement has not been provided, then the layout should be amended to accommodate the easement strip.

You may want to consider applying for the sewers within the site to be diverted, however, due to the strategic importance of the two rising mains if a diversion is accepted then Severn Trent Water will need to carry out the work at your client's cost. Further information can be viewed here;

https://www.stwater.co.uk/content/dam/stw/stw_buildinganddevelo ping/Sewer-diversion-guidance-GN6.pdf

https://www.stwater.co.uk/content/dam/stw/stw_buildinganddevelo ping/st-section-185-flow-chart.pdf

Please consider, due to a change in legislation on 1 October 2011, there may be former private sewers on the site which have transferred to the responsibility of Severn Trent Water Ltd, which are not shown on the statutory sewer records but are located in your client's land. These sewers would also have protective strips that we will not allow to be built over. If such sewers are identified to be present on the site, please contact us for further guidance.

Foul Water Drainage

The sewer records show a 300mm combined sewer and a 150mm foul network on Stuart Ave and Pump Hollow Lane as the closest point of connection for the site. These networks are located a couple of metres upstream of the Pump Hollow Lane CSO chamber and as such a connection into either network is not advised.

Instead, Severn Trent Water would suggest a connection into the 300mm combined sewer, downstream of the CSO chamber, at manhole SK56611401 should be explored.

It is anticipated that the additional foul flows (approx. 1.41 l/s at 2 x DWF) may have an adverse effect on the existing network. As such Modelling will be required to be better understand the impact. Severn Trent propose that two scenarios are modelled, the first being a connection upstream of the CSO chamber on the 300mm combined network and the other at manhole SK56611401.

To enable STW to determine the impact on the works modelling will be required to better understand it. In a change to our previous process, we no longer charge developers for the hydraulic modelling service. We will liaise with you over time with regards to the outcome of our investigations and any impact that may have on the planning status, occupation, or phasing of the site. However, while we can provide a brief summary of our findings if you need us to, we will no longer provide the full external capacity assessment report.

SEVERN

TRENT

From the application you have submitted, I am assuming that the development has not been granted planning approval. Please inform us as and when planning has progressed as this will help determine how quick we carry out the modelling exercise. In the meantime, the site will be added to our modelling tracker and reviewed regularly until the site can be progressed for sewer modelling. I would therefore be grateful if you would forward as soon as possible the following details:

- Proposed submission of your Planning Application
- Confirmation whether a pumped solution is required.
- Proposed planned start and completion date.
- Any phasing details of the proposed development.
- Confirm how many properties will discharge into each of the connections to the public sewer.
- Planned occupation date.

Surface Water Drainage

Under the terms of Section H of the Building Regulations 2000, the disposal of surface water by means of soakaways should be considered as the primary method. If these are found to be unsuitable, satisfactory evidence will need to be submitted. The evidence should be either percolation test results or by the submission of a statement from the SI consultant (extract or a supplementary letter).

Subject to above Severn Trent Water expects all surface water from the development to be drained in a sustainable way to the nearest watercourse or land drainage channel, subject to the developer discussing all aspects of the developments surface water drainage with the Local Lead Flood Authority (LLFA). Any discharge rate to a watercourse or drainage ditch will be determined by the LLFA / EA.

As noted within the supporting information preliminary percolation tests suggest that the use of soakaways is likely on site. Therefore a connection to the public network should not be required.

Please note, STW and the LPA have determined that no surface water connections to the combined network will be considered for any new site within Mansfield. As a last resort STW may consider allowing a surface water connection to the 675mm surface water sewer on Pump Hollow Lane at greenfield or Q-bar rates, dependant at which rate is lower during a 1 in 100 year (+40%) storm event.

New Connections

For any new connections (including the re-use of existing connections) to the public sewerage system, the developer will need to submit Section 106 application forms. Our New Connections department are responsible for handling all such enquiries and applications. To contact them for an application form and associated guidance notes please call 0800 707 6600 or download from www.stwater.co.uk.

Please quote is 1071487 in any future correspondence (including emails) with STW Limited. Please note that 'Development Enquiry' responses are only valid for 6 months from the date of this letter.

Yours sincerely,

Pierce Meguer Senior Evaluation Technician Network Solutions Developer Services

SUPPLEMENTARY GUIDANCE NOTES RELATING TO DISPOSAL OF SURFACE WATER

Introduction

The purpose of this guidance note is to provide advice to applicants when completing the surface water drainage design for a new development, both for Greenfield and Brownfield sites. This does not affect foul drainage disposal which should be discussed with Severn Trent as early as possible to ensure additional flows can be accommodated without undue delay to the development.

Lead Local Flood Authority (LLFA) Consultation

Since April 2015, the LLFA have assumed the role of being a statutory consultee in the planning process for developments of 10 dwellings or more: or equivalent non-residential and/or mixed development. The LLFAs role is vital to ensure that surface water disposal on new development is adequately assessed so that the local planning authority can satisfy themselves that drainage proposals are satisfactory and to make sure, through the use of planning conditions or planning obligations, that there are clear arrangements in place for future maintenance of sustainable drainage systems (SuDS) over the lifetime of the development. This will also ensure surface water disposal aligns with local planning policies, flood risk strategies and national policies, such as the National Planning Policy Framework (NPPF).

It is strongly recommended that the LLFA are involved in early pre-application discussions when the development of a site is initially being considered. Pre-application discussions will help to ensure that SuDS are appropriately considered ahead of or as part of preliminary development layouts, and that they are fully integrated into the final development layout. Whilst Severn Trent are willing to advise on sewerage availability this does to negate the planning requirement relating to adequacy of SuDS on new development.

Council Guidance

Specific guidance has been published by each of the Councils, within the Severn Trent area, for the purpose of providing guidance to all persons involved in the design, construction, operation and future maintenance of all SuDs features within their jurisdiction.

The purpose of the council producing this guidance is to unite all stakeholders to embrace a new attitude to SuDs to respond to the pressures to the changing climate as well as the need to better under area's ground conditions, greenfield, urbanised environment, and watercourses. Each Council's guidance has been published on their websites which we encourage developers to use as a resource before considering a surface water connection to the Severn Trent Water network.

Links to the council specific guidance can be found on the accompanying spreadsheet.

SuDS Hierarchy

Severn Trent is fully supportive of the fundamental SuDS principle that priority should be given to managing surface water as close to source as possible. In accordance with national standards and guidance a sequential series of checks should be undertaken to ensure the relevant SuDS features are being proposed whereby (in order of priority) rainwater re-use, infiltration to ground and controlled discharge to a water body are properly considered ahead of any <u>controlled</u> connection to a culverted watercourse/other drainage system or public surface water sewer.

A controlled connection to a public combined/foul sewer would only be considered under rare exceptional circumstances where all other options have been completely exhausted. Acceptance of surface water into a combined sewer is not only unsustainable because of the need to convey/treat rainwater but is also takes away existing capacity which could constrain the connection of foul flows on future development. It is also possible that connection of additional surface water flows will require capacity upgrades to the existing sewerage system which may delay development.

Severn Trent consider the CIRIA 'The SuDs Manual' (C753F) guidance to the most comprehensive study that provides bets practice guidance on how to ensure the effective delivery of surface water management. A free copy of the guidance can be downloaded from the CIRIA, here: https://www.ciria.org/ItemDetail?iProductCode=C753F&Category=FREEPUBS

Connection to a Public Sewer

Whilst Severn Trent will be able to provide advice on potential public surface water sewer connection options, it is essential that a developer contacts the LLFA as early as possible to discuss surface water disposal as they will be able to provide guidance on surface water flood risk policy which may influence SuDS requirements. It is strongly recommended that LLFA discussions take place <u>before</u> contacting Severn Trent. Where the outcome of LLFA discussions concludes that a controlled discharge to the public sewerage system is the only viable option then Severn Trent would be pleased to discuss sewer connection options, satisfied that the LLFA have been consulted in line with their surface water management role and in their capacity as statutory consultee.

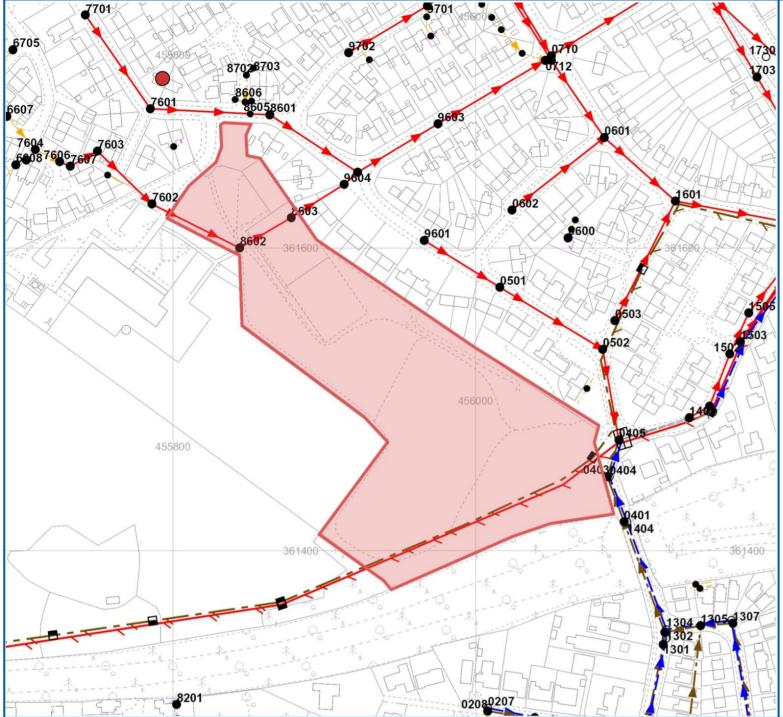
Evidence must be provided to demonstrate why the sequential SuDS checks have concluded that a connection to the public sewer is required. This must include a Site Investigation Report including percolation test data/graphs/calculations/results together with relevant correspondence with the LLFA.

Design Standards

Surface water disposal design should consider the interactions between the adoptable sewer design criteria based on a 30-year design storm (outlined in 'Design and Construction Guidance') and the "Non-statutory technical standards for SuDS" requirement to restrict discharge from a site up to and including the 1 in 100 year critical storm event plus an allowance for climate change as required by the LLFA.

For Greenfield development, the peak runoff rate should never exceed the peak pre-development run-off rates/volumes for the same rainfall event irrespective of the design storm duration consistent with the national non-statutory technical standards. For developments which were previously developed (Brownfield), the peak runoff rate must be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event but should never exceed the rate of discharge from the development prior to redevelopment again for the same rainfall event. This requirement to remove pre-development surface water discharges to the sewerage system will help remove capacity constraints and aid future development.

To establish the pre-development run-off rates a detailed existing drainage survey will be required indicating pipe locations including sizes and levels, impermeable area connectivity to each pipe and topographical information to support existing drainage assumptions. Photographs of the existing buildings and surface features should be provided and where necessary a CCTV sewer survey should be provided to support the drainage survey to demonstrate connectivity.


In line with 'Design and Construction Guidance', the drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur on any part of the site for a 1 in 30-year rainfall event. For higher storm return periods the drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur during a 1 in 100-year rainfall event in any part of: a building (including a basement); or in any utility plant susceptible to water (e.g. pumping station, electricity substation, water booster station) within the development.

Small Developments

Whilst developments of fewer than 10 dwellings (or their equivalent) are excluded from the post April 2015 planning requirements the underlying principles regarding sustainable surface water management are still valid. The collective impacts of surface water discharges from smaller developments can have an adverse impact on flood risk, especially in smaller rural catchments where smaller sewerage systems are more susceptible to increases in surface water inflow. On small developments infiltration to ground and peak flow attenuation must be considered to mitigate flood risk in the community but where a sewer connection is envisaged then the developer is recommended to discuss surface water disposal options with Severn Trent as early as possible.

Contact

For further assistance please contact our Network Solutions team via: network.solutions@severntrent.co.uk

Reference	Cover Level	Invert Level Upstream	Invert Level Downstream	Purpose	Material	Pipe Shape	Max Size	Min Size	Gradient	Year Laid
SK55618603	<unk></unk>	<unk></unk>	109.561	С	<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	0	31/12/1899 00:00:00
<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	F	<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	16/04/2012 00:00:00
SK55618604	112.15	110.97	110.91	F	U	С	150	<unk></unk>	141.83	05/11/2010 00:00:00
SK55618702	112.37	111.09	110.97	F	U	С	150	<unk></unk>	149.67	05/11/2010 00:00:00
SK55618607	<unk></unk>	<unk></unk>	<unk></unk>	F	U	С	150	<unk></unk>	0	05/11/2010 00:00:00
SK55618606	<unk></unk>	<unk></unk>	<unk></unk>	F	U	С	150	<unk></unk>	0	05/11/2010 00:00:00
SK55618605	112.1299	110.84	110.112	С	<unk></unk>	С	225	0	17.86	31/12/1899 00:00:00
SK55618703	<unk></unk>	<unk></unk>	<unk></unk>	F	U	С	150	<unk></unk>	0	05/11/2010 00:00:00
SK56611505	101.26	99.74	<unk></unk>	С	со	С	300	<unk></unk>	0	31/12/1899 00:00:00
SK55616607	116.194	114.834	114.323	С	<unk></unk>	С	150	<unk></unk>	57	31/12/1899 00:00:00
SK55617604	115.413	114.273	114.067	С	<unk></unk>	С	150	<unk></unk>	85.19	31/12/1899 00:00:00
SK55617605	115.7279	114.588	114.323	С	<unk></unk>	С	150	<unk></unk>	34.15	31/12/1899 00:00:00
SK55619602	110.6269	109.257	108.03	С	<unk></unk>	С	225	<unk></unk>	50.33	31/12/1899 00:00:00
SK55617606	114.9169	113.907	113.682	С	<unk></unk>	С	150	<unk></unk>	33.13	31/12/1899 00:00:00
SK55617607	114.8919	113.672	113.337	С	<unk></unk>	С	150	<unk></unk>	60.56	31/12/1899 00:00:00
SK55617602	114.0559	112.906	111.912	С	<unk></unk>	С	150	<unk></unk>	65.51	31/12/1899 00:00:00
SK55619601	109.1419	107.502	106.24	С	<unk></unk>	С	225	<unk></unk>	46.69	31/12/1899 00:00:00
SK55617701	115.416	113.836	111.172	С	<unk></unk>	С	225	<unk></unk>	28.36	31/12/1899 00:00:00
SK56611402	101.8539	100.21	100.04	С	со	С	300	<unk></unk>	217.35	31/12/1899 00:00:00
SK55616608	115.568	114.648	114.608	С	<unk></unk>	С	150	<unk></unk>	190.5	31/12/1899 00:00:00
SK56611502	101.4619	100.04	99.74	С	со	С	300	<unk></unk>	99.03	31/12/1899 00:00:00
SK55618601	111.622	110.092	109.267	С	<unk></unk>	С	225	<unk></unk>	83.54	31/12/1899 00:00:00
SK55616705	117.16	116.25	116.124	С	<unk></unk>	С	150	<unk></unk>	92.62	31/12/1899 00:00:00
SK55617603	114.2669	113.317	112.936	С	VC	С	150	<unk></unk>	132.13	31/12/1899 00:00:00
SK56610501	107.901	106.24	102.83	С	VC	С	225	<unk></unk>	23.28	31/12/1899 00:00:00
SK56611303	106.4	103.8	103.155	F	<unk></unk>	С	150	<unk></unk>	119.74	31/12/1899 00:00:00
SK56611306	106.3909	104.801	104.186	s	<unk></unk>	С	225	<unk></unk>	70.03	31/12/1899 00:00:00
SK56610711	107.7659	105.71	104.48	С	со	С	300	<unk></unk>	50.28	31/12/1899 00:00:00
SK56610502	105.688	102.83	101.531	С	со	С	300	<unk></unk>	45.85	31/12/1899

LEGEND

Ancilla	iry	_	Severage Isolation Valve	-	Null
0	Balancing Lagoon	T	Sewerage Non Return Valve		None
ō	Grease Trap	Manh	ole		Highway Drain
•	Interceptor	•	Foul Bifurcation Manhole	-	Adopted Sewer
Ħ	Screen	•	Combined Bifurcation Manhole	Storag	je
Chamb	ber	0	Surface Water Bifurcation Manhole	DS	Disposal Site
0	Flushing Chamber	۲	Dual Manhole		Off-Line Waste Water Storage
Ø	Scalaway	•	Foul Single Manhole		On-Line Waste Water Storage
	Overflow	•	Combined Single Manhole	θ	Wet Well
Fitting		0	Surface Water Single Manhole	Waste	Water Process Structure
	Blind Shaft	•	Twin Manhole	579	Sewage Treatment Point
\boxtimes	Facility Connector	•	Foul Adopted Manhole	\$75	Sewage Treatment Structure
Ð	Head Node	•	Combined Adopted Manhole	SLTP	Sludge Treatment Point
	Lamphole	0	Surface Adopted Manhole	SLTS	Sludge Treatment Structure
٠	Sewerage Air Valve	•	Transferred Manhole	Gravit	y Sewer Pipe
-	Sewerage Chemical Injection Point	•	Unsurveyed Manhole	_	Foul Gravity Sewer
	Sewerage Hatch Box	Opera	tional Site	_	Combined Gravity Sewer
	Sewerage Pressure Washout	Waste	Water Pump	_	Surface Water Gravity Sewer
	Vent Column	-	Transferred Asset		S104 Surface Water Gravity Sewer
	Waste Water Outfall	-	524	-	\$104 Combined Gravity Sewer
Contro	ol Valve		\$104	_	S104 Foul Gravity Sewer
_	Hydrobrake		\$102		Private Surface Water Gravity Sewe
	Penstock		Null Private	_	Private Combined Gravity Sewer

		Private Foul Gravity Sewer	_	Surface Water
		Surface Water Unsurveyed Pipe		Foul Vacuum
	_	Combined Unsurveyed Pipe	_	Combined Vac
		Foul Unsurveyed Pipe		S104 Surface V
		Transferred Surface Water Sewer	_	S104 Combine
	_	Transferred Combined Sewer		S104 Foul Vac
		Transferred Foul Sewer		Private Surface
		Disposal Pipe	_	Private Combin
		Overflow Pipe		Private Foul Va
	_	Culverted Water Course	_	Surface Water
	_	Waste Internal Site Pipe	_	Combined Sip
	_	Sewer Service Connection		Foul Siphon
	_	Gravity Sewer Others		Private Surface
	Pressu	re Sewer Pipe	_	Private Combin
	_	Surface Water Pressure Sewer		Private Foul Si
	_	Combined Pressure Sewer		S104 Surface V
	_	Foul Pressure Sewer	_	\$104 Combine
		S104 Surface Water Pressure Sewer		S104 Foul Siph
H.	-	S104 Combined Pressure Sewer		Surface Water
		S104 Foul Pressure Sewer	_	Combined Un
		Private Surface Water Pressure Sewer		Foul Unsurvey
wer	_	Private Combined Pressure Sewer	_	Disposal Pipe
	_	Private Foul Pressure Sewer	Service	e Pipe

_	Surface Water Lateral Drain
_	Surface Water Lateral Drain
_	Combined Lateral Drain
_	Foul Lateral Drain
_	S104 Surface Water Lateral Drain
_	S104 Combined Lateral Drain
_	S104 Foul Lateral Drain
_	Private Surface Water Lateral Drain
	Private Combined Lateral Drain
_	Private Foul Lateral Drain
_	Transferred Surface Water Lateral D
_	Transferred Combined Lateral Drain
_	Transferred Foul Lateral Drain
Print20	10mLine
	Print20

rface Wate

Surface Water Sipho

Combined Siphon

ined Sinho

Foul Siphor

I Drain	
e Water Lateral Dra	
ined Lateral Drain	
ateral Drain	

ATE	RIALS	CATEGORIES
	- NONE	W - WEIR
C	- ASBESTOS CEME	C - CASCADE
R	- BRICK	DB - DAMBOARD
C	- CONCRETE BOX CULVERT	SE - SIDE ENTRY
1	- CAST IRON	FV - FLAP VALVE
0	- CONCRETE	BD - BACK DROP
SB	CONCRETE SEGMENTS (BOLTED)	S - SIPHON
SU	- CONCRETE SEGMENTS (UNBOLTED)	D - HIGHWAY DRAIN
N	- DUCTILE IRON	S104 - SECTION 104
RP	- GLASS REINFORCED PLASTIC	
AC	- MASONRY IN REGULAR COURSES	SHAPE
/IAR	- MASONRY RANDOMLY COURSED	C - CIRCULAR
E	- POLYETHLENE	E - EGG SHAPED
F	- PITCH	0 - OTHER
P	- POLYPROPYLENE	R - RECTANGLE
SC	- PLASTIC STEEL COMPOSITE	S - SQUARE
VC	- POLYVINYL CHLORIDE	T - TRAPEZOIDAL
PM	- REINFORCED PLASTIC MATRIX	U - UNKNOWN
1	- SPUN (GREY) IRON	
т	- STEEL	PURPOSE
J	- UNKNOWN	C - COMBINED
C S	- VITRIFIED CLAY	E - FINAL EFFLUENT
XX	- OTHER	F - FOUL
		L - SLUDGE
		S - SURFACE WATER
		Ņ

reserved.

SEVERN TRENT

Severn Trent Water Limited Asset Data Management PO Box 5344 Coventry CV3 9FT Telephone: 0345 601 6616

SEWER RECORD (Tabular)

O/S Map Scale: 1:2,500

This map is centred upon:

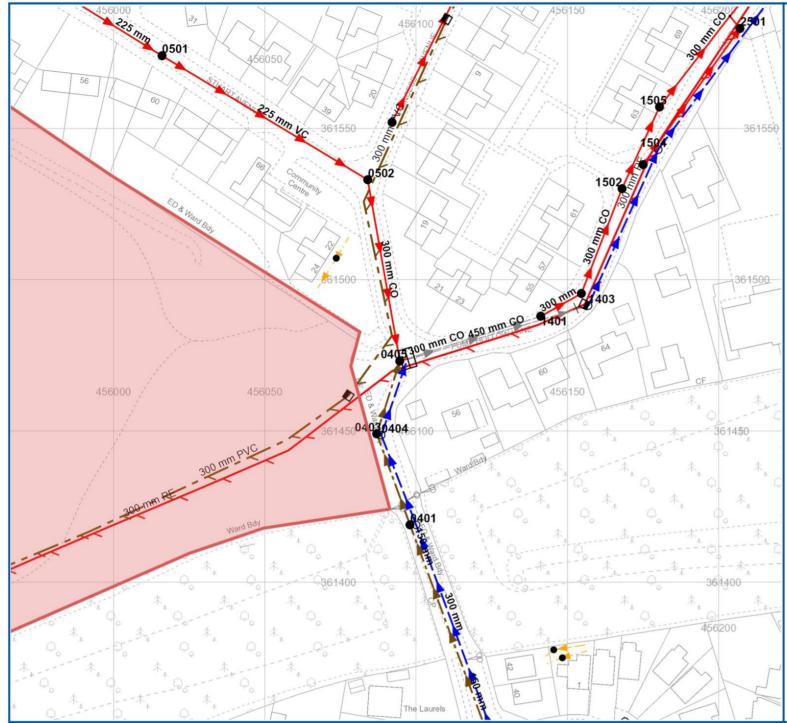
X: 455943.81

Y: 361526.64

Disclaimer Statement

Date of Issue: 26-01-23

1 Do not scale off this Map.


2 This plan and any information supplied with it is furnished as a general guide, is only valid at the date of issue and no warranty as to its correctness is given or implied. In particular this plan and any information shown on it must not be relied upon in the event of any development or works (including but not limited to excavations) in the vicinity of SEVERN TRENT WATER assets or for the purposes of determining the suitability of a point of connection to the sewerage or distribution systems.

3 On 1 October 2011 most private sewers and private lateral drains in Severn Trent Water's sewerage area, which were connected to a public sewer as at 1 July 2011, transferred to the ownership of Severn Trent Water and became public sewers and public lateral drains. A further transfer takes place on 1 October 2012. Private pumping stations, which form part of these sewers or lateral drains, will transfer to ownership of Severn Trent Water on or before 1 October 2016. Severn Trent Water does not possess complete records of these assets. These assets may not be displayed on the map.

4 Reproduction by permission of Ordnance Survey on behalf of HMSO. Crown Copyright and database right 2004. All rights

5 Ordnance Survey licence number: 100031673

6 Document users other than SEVERN TRENT WATER business users are advised that this document is provided for reference purpose only and is subject to copyright, therefore, no further copies should be made from it.

Reference	Cover Level	Invert Level Upstream	Invert Level Downstream	Purpose	Material	Pipe Shape	Max Size	Min Size	Gradient	Year Laid
SK56611505	101.26	99.74	<unk></unk>	С	со	С	300	<unk></unk>	0	31/12/1899 00:00:00
SK56612501	100.829	99.589	<unk></unk>	С	VC	С	150	<unk></unk>	0	31/12/1899 00:00:00
SK56611402	101.8539	100.21	100.04	С	со	С	300	<unk></unk>	217.35	31/12/1899 00:00:00
SK56611502	101.4619	100.04	99.74	С	со	С	300	<unk></unk>	99.03	31/12/1899 00:00:00
SK56610501	107.901	106.24	102.83	с	VC	С	225	<unk></unk>	23.28	31/12/1899 00:00:00
SK56611306	106.3909	104.801	104.186	S	<unk></unk>	С	225	<unk></unk>	70.03	31/12/1899 00:00:00
SK56610502	105.688	102.83	101.531	с	со	С	300	<unk></unk>	45.85	31/12/1899 00:00:00
SK56610405	103.791	101.461	<unk></unk>	с	со	С	300	<unk></unk>	0	31/12/1899 00:00:00
SK56611403	101.924	99.794	99.31	S	со	С	450	<unk></unk>	122.08	31/12/1899 00:00:00
SK56610403	104.3089	102.459	101.641	F	<unk></unk>	С	150	<unk></unk>	31.83	31/12/1899 00:00:00
SK56611404	106.178	103.528	103.009	S	<unk></unk>	С	300	<unk></unk>	61.08	31/12/1899 00:00:00
SK56611504	101.333	<unk></unk>	98.709	S	<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	0	31/12/1899 00:00:00
SK56611401	102.3669	100.277	100.214	С	<unk></unk>	С	300	<unk></unk>	250.67	31/12/1899 00:00:00
SK56610503	105.619	<unk></unk>	102.627	С	<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	0	31/12/1899 00:00:00
SK56610404	104.3389	102.929	101.008	S	<unk></unk>	С	300	<unk></unk>	14.13	31/12/1899 00:00:00
SK56610401	106.135	103.125	102.479	F	<unk></unk>	С	150	<unk></unk>	49.15	31/12/1899 00:00:00
SK56611503	101.1969	<unk></unk>	99.589	С	<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	0	31/12/1899 00:00:00
<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	F	VC	<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	31/12/1899 00:00:00
<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	S	VC	<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	31/12/1899 00:00:00
<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	F	VC	<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	31/12/1899 00:00:00

LEGEND

Ancilla	iry	Contro	ol Valve	-	\$104	-	S104 Foul Gravity Sewer		Private Surface Water Pressure Sewer		Fo
0	Balancing Lagoon	_	Hydrobrake		\$102		Private Surface Water Gravity Sewer	_	Private Combined Pressure Sewer	_	Di
õ	Grease Trap	=	Penstock	-	Null Private	_	Private Combined Gravity Sewer	_	Private Foul Pressure Sewer	Servi	e Pip
•	Interceptor	_	Severage Isolation Valve		Null		Private Foul Gravity Sewer	_	Surface Water Vacuum Sewer	-	Su
Ħ	Screen	T	Sewerage Non Return Valve		None		Surface Water Unsurveyed Pipe		Foul Vacuum Sewer	_	Co
Cham	ber	Manho	ole	-	Highway Drain	—	Combined Unsurveyed Pipe	_	Combined Vacuum Sewer	_	Fo
0	Flushing Chamber	•	Foul Bifurcation Manhole	-	Adopted Sewer		Foul Unsurveyed Pipe		S104 Surface Water Vacuum Sewer	-	51
Ø	Scalkaway	•	Combined Bifurcation Manhole	Storag	e		Transferred Surface Water Sewer	-	S104 Combined Vacuum Sewer	_	\$1
	Overflow	0	Surface Water Bifurcation Manhole	DS	Disposal Site	_	Transferred Combined Sewer		S104 Foul Vacuum Sewer	_	51
Conne	ector	۲	Dual Manhole		Off-Line Waste Water Storage		Transferred Foul Sewer		Private Surface Water Vaccum Sewer	_	Pr
	Server Junctions	•	Foul Single Manhole		On-Line Waste Water Storage		Disposal Pipe	_	Private Combined Vacuum Sewer	_	Pr
2	SewerLine Connection Node	•	Combined Single Manhole	θ	Wet Well		Overflow Pipe		Private Foul Vacuum Sewer	_	Pr
Fitting		0	Surface Water Single Manhole	Waste	Water Process Structure	=	Culverted Water Course	_	Surface Water Siphon	-	Т
	Blind Shaft	•	Twin Manhole	577	Sewage Treatment Point	_	Waste Internal Site Pipe	-	Combined Siphon	-	Ta
\boxtimes	Pacility Connector	•	Foul Adopted Manhole	\$75	Sewage Treatment Structure	_	Sewer Service Connection		Foul Siphon	_	Tra
Ð	Head Node	•	Combined Adopted Manhole	SLTP	Sludge Treatment Point	_	Gravity Sewer Others		Private Surface Water Siphon	Land	ineSy
	Lamphole	0	Surface Adopted Manhole	SLTS	Sludge Treatment Structure	Pressu	re Sewer Pipe	_	Private Combined Siphon		Cu
٠	Sewerage Air Valve	•	Transferred Manhole	Gravity	/ Sewer Pipe	_	Surface Water Pressure Sewer		Private Foul Siphon	eec	Di
-	Severage Chemical Injection Point	•	Unsurveyed Manhole	_	Foul Gravity Sewer	_	Combined Pressure Sewer		S104 Surface Water Siphon	-0	Bo
	Sewerage Hatch Box	Operat	tional Site	_	Combined Gravity Sewer	_	Foul Pressure Sewer	-	S104 Combined Siphon	\leftarrow	Be
•	Sewerage Pressure Washout		Water Pump	-	Surface Water Gravity Sewer		S104 Surface Water Pressure Sewer		S104 Foul Siphon	$\sim - 1$	Ra
.	Vent Column	-	Transferred Asset		S104 Surface Water Gravity Sewer	-	S104 Combined Pressure Sewer		Surface Water Unsurveyed Pipe	\leftarrow	Ro
	Waste Water Outfall		S24	_	\$104 Combined Gravity Sewer		S104 Foul Pressure Sewer	_	Combined Unsurveyed Pipe	Print	iOmL

iewer		Foul Unsurveyed Pipe
ы	_	Disposal Pipe
	Service	e Pipe
	-	Surface Water Lateral Drain
	_	Combined Lateral Drain
	_	Foul Lateral Drain
ver	-	S104 Surface Water Lateral Drain
	_	S104 Combined Lateral Drain
	_	S104 Foul Lateral Drain
ewer	_	Private Surface Water Lateral Drain
er	_	Private Combined Lateral Drain
	_	Private Foul Lateral Drain
	-	Transferred Surface Water Lateral Dra
	-	Transferred Combined Lateral Drain
	_	Transferred Foul Lateral Drain
	Landli	neSymbol
		Culvert Symbol
	ee-	Direction Of Flow Symbol
	-0	Boundary Half Mereing Symbol
	\leftarrow	Bench Mark Symbol
	$\sim - \sim$	Railway Switch Symbol
	\leftarrow	Road Related Row Symbol
-	Print50	OmLine

MATE	RIALS	CATEGORIES	
	- NONE	W - WEIR	
AC	- ASBESTOS CEME	C - CASCADE	
BR	- BRICK	DB - DAMBOARD	
CC	- CONCRETE BOX CULVERT	SE - SIDE ENTRY	
CI	- CAST IRON	FV - FLAP VALVE	
со	- CONCRETE	BD - BACK DROP	
CSB	CONCRETE SEGMENTS (BOLTED)	S - SIPHON	
CSU	- CONCRETE SEGMENTS (UNBOLTED)	D - HIGHWAY DRAIN	
DI	- DUCTILE IRON	S104 - SECTION 104	
GRP	- GLASS REINFORCED PLASTIC		
MAC	- MASONRY IN REGULAR COURSES	SHAPE	
MAR	- MASONRY RANDOMLY COURSED	C - CIRCULAR	
PE	- POLYETHLENE	E - EGG SHAPED	
PF	- PITCH	0 - OTHER	
PP	- POLYPROPYLENE	R - RECTANGLE	
PSC	- PLASTIC STEEL COMPOSITE	S - SQUARE	
PVC	- POLYVINYL CHLORIDE	T - TRAPEZOIDAL	
RPM	- REINFORCED PLASTIC MATRIX	U - UNKNOWN	
SI	- SPUN (GREY) IRON		
ST	- STEEL	PURPOSE	
U	- UNKNOWN	C - COMBINED	
VC	- VITRIFIED CLAY	E - FINAL EFFLUENT	
XXX	- OTHER	F - FOUL	
		L - SLUDGE	
		S - SURFACE WATER	
		W S E	

Date of Issue: 26-01-23

Severn Trent Water Limited Asset Data Management PO Box 5344 Coventry CV3 9FT Telephone: 0345 601 6616

SEWER RECORD (Tabular)

O/S Map Scale: 1:1,250

This map is centred upon:

X: 456093.23 **Y:** 361472.46

Disclaimer Statement

1 Do not scale off this Map.

2 This plan and any information supplied with it is furnished as a general guide, is only valid at the date of issue and no warranty as to its correctness is given or implied. In particular this plan and any information shown on it must not be relied upon in the event of any development or works (including but not limited to excavations) in the vicinity of SEVERN TRENT WATER assets or for the purposes of determining the suitability of a point of connection to the sewerage or distribution systems.

3 On 1 October 2011 most private sewers and private lateral drains in Severn Trent Water's sewerage area, which were connected to a public sewer as at 1 July 2011, transferred to the ownership of Severn Trent Water and became public sewers and public lateral drains. A further transfer takes place on 1 October 2012. Private pumping stations, which form part of these sewers or lateral drains, will transfer to ownership of Severn Trent Water on or before 1 October 2016. Severn Trent Water does not possess complete records of these assets. These assets may not be displayed on the map.

4 Reproduction by permission of Ordnance Survey on behalf of HMSO. Crown Copyright and database right 2004. All rights reserved.

5 Ordnance Survey licence number: 100031673

6 Document users other than SEVERN TRENT WATER business users are advised that this document is provided for reference purpose only and is subject to copyright, therefore, no further copies should be made from it.

Appendix D

Proposed Drainage Strategy Supporting Calculations

BSP Consulting Ltd		Page 1
12 Oxford Street	22-0541	
Nottingham	Stuart Avenue,	
NG1 5BG	Mansfield, Nottinghamshire	Micro
Date 30/03/2023	Designed by SCB	Drainage
File	Checked by TG	Diamage
Micro Drainage	Source Control 2020.1.3	

ICP SUDS Mean Annual Flood

Input

Return Period (years)1Soil0.150Area (ha)3.340Urban0.000SAAR (mm)700RegionNumberRegion

Results 1/s

QBAR Rural 1.4 QBAR Urban 1.4 Q1 year 1.1

Q1 year 1.1 Q30 years 2.7 Q100 years 3.5

BSP Consulting Ltd		Page 1
12 Oxford Street	22-0541	
Nottingham	Stuart Avenue,	
NG1 5BG	Mansfield, Nottinghamshire	Micro
Date 30/03/2023	Designed by SCB	Drainage
File	Checked by TG	Diamage
Micro Drainage	Source Control 2020.1.3	

ICP SUDS Mean Annual Flood

Input

Return Period (years)1Soil0.350Area (ha)3.340Urban0.000SAAR (mm)700RegionNumberRegion

Results 1/s

QBAR Rural 8.5 QBAR Urban 8.5 Q1 year 7.1 Q1 year 7.1 Q30 years 16.7 Q100 years 21.9

BSP Consulting Ltd		Page 1
12 Oxford Street	22-0541	
Nottingham	Stuart Avenue,	
NG1 5BG	Mansfield, Nottinghamshire	Micro
Date 03/04/2023	Designed by SCB	Drainage
File 22-0541_SOAKAWAY_P01-230	Checked by TG	Diamade
Micro Drainage	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+40%)

	Stor Ever		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Volume (m³)	Status
15	min	Summer	110.048	0.318	0.1	3.3	ОК
30	min	Summer	110.143	0.413	0.1	4.3	ΟK
60	min	Summer	110.238	0.508	0.1	5.3	ΟK
120	min	Summer	110.326	0.596	0.1	6.2	ΟK
180	min	Summer	110.368	0.638	0.1	6.7	ΟK
240	min	Summer	110.391	0.661	0.1	6.9	ΟK
360	min	Summer	110.413	0.683	0.1	7.1	ΟK
480	min	Summer	110.419	0.689	0.1	7.2	ΟK
600	min	Summer	110.418	0.688	0.1	7.2	ΟK
720	min	Summer	110.416	0.686	0.1	7.2	ΟK
960	min	Summer	110.408	0.678	0.1	7.1	ΟK
1440	min	Summer	110.384	0.654	0.1	6.8	ΟK
2160	min	Summer	110.338	0.608	0.1	6.4	ΟK
2880	min	Summer	110.290	0.560	0.1	5.8	ΟK
4320	min	Summer	110.202	0.472	0.1	4.9	ΟK
5760	min	Summer	110.136	0.406	0.1	4.2	O K
7200	min	Summer	110.096	0.366	0.1	3.8	ΟK
8640	min	Summer	110.064	0.334	0.1	3.5	ΟK

Half Drain Time : 690 minutes.

	Sto	cm	Rain	Flooded	Time-Peak
	Ever	nt	(mm/hr)	Volume	(mins)
				(m³)	
			138.153	0.0	19
30	min	Summer	90.705	0.0	33
60	min	Summer	56.713	0.0	64
120	min	Summer	34.246	0.0	122
180	min	Summer	25.149	0.0	182
240	min	Summer	20.078	0.0	242
360	min	Summer	14.585	0.0	360
480	min	Summer	11.622	0.0	478
600	min	Summer	9.738	0.0	524
720	min	Summer	8.424	0.0	584
960	min	Summer	6.697	0.0	704
1440	min	Summer	4.839	0.0	978
2160	min	Summer	3.490	0.0	1380
2880	min	Summer	2.766	0.0	1764
4320	min	Summer	1.989	0.0	2512
5760	min	Summer	1.573	0.0	3232
7200	min	Summer	1.311	0.0	3960
8640	min	Summer	1.129	0.0	4672
		©1982	-2020 I	nnovyze	

BSP Consulting I	Ltd						
L2 Oxford Street	-			22-0541			
Nottingham				Stuart A	venue,		
NG1 5BG			1	Mansfiel	d, Nott:	inghamsh	ire
Date 03/04/2023				Designed			
File 22-0541 SOF		Z D01_23		Checked (_		
—	ANAWAI					0000 1 0	
licro Drainage			1	Source C	ontrol .	2020.1.3	
		C D	1. 6	1.0.0			1 (. 4000
Sur	mmary	of Resu	lts ic	or 100 ye	ar Retu	rn Peric	od (+40%)
	6	+ 0 1000	More	Mou	More	Max	Status
		torm vent	Max Level	Max Donth 1	Max	Max ion Volume	
	Б	venc	(m)	(m)	(1/s)	(m ³)	2
			(111)	(111)	(1/5)	()	
1	10080 n	nin Summer	110.03	38 0.308		0.1 3.2	2 ОК
	15 n	nin Winter	110.08	36 0.356		0.1 3.7	7 ОК
	30 n	nin Winter	110.19	93 0.463		0.1 4.8	в ок
		nin Winter				0.1 6.0	о к
		nin Winter				0.1 7.0	
		nin Winter				0.1 7.5	
		nin Winter				0.1 7.8	
		nin Winter nin Winter				0.1 8.1 0.1 8.2	
		min Winter nin Winter				0.1 8.3	
		min Winter				0.1 8.2	
		nin Winter				0.1 8.0	
		nin Winter				0.1 7.0	
	2160 n	nin Winter	110.38	38 0.658		0.1 6.9	Э ОК
	2880 n	nin Winter	110.31	L4 0.584		0.1 6.2	L OK
	4320 n	nin Winter	110.18	35 0.455		0.1 4.8	в ок
		nin Winter				0.1 4.0	о к
		nin Winter				0.1 3.5	
	8640 n	nin Winter	110.02	26 0.296		0.1 3.1	1 ОК
		Sto	orm	Rain	Flooded	Time-Peak	
		Eve	ent	(mm/hr)	Volume	(mins)	
					(m³)		
		10080 mi	n Summa	r 0.994	0.0	5448	
				r 138.153	0.0	5448 19	
			n Winte n Winte		0.0	33	
			n Winte		0.0	62	
			n Winte		0.0	120	
			n Winte		0.0	180	
		240 mi	n Winte		0.0	238	
		360 mi	n Winte	r 14.585	0.0	352	
		480 mi	n Winte		0.0	464	
			n Winte		0.0	572	
			n Winte		0.0	672	
			n Winte		0.0	760	
		1440 mi			0.0	1066	
		2160 mi	n winte	r 3.490	0.0	1496	

2.766

1.989

1.573

1.311

1.129

©1982-2020 Innovyze

0.0

0.0

0.0

0.0

0.0

1904 2640

3344

4104

4840

2880 min Winter

4320 min Winter

5760 min Winter

7200 min Winter

8640 min Winter

3SP Consultin								Page 3
12 Oxford Str	reet	22	2-0541					
Nottingham			cuart A					
NG1 5BG				d, Nott		amshi	re	_ Micro
ate 03/04/20				by SCB	3			Draina
	SOAKAWAY_P01-2		necked					Didiric
icro Drainaç	ſe	Sc	ource C	ontrol	2020	1.3		
	Summary of Res	ults for	100 ye	ear Reti	urn i	Period	d (+40%)	
	Storm Event		Max Depth : (m)	Max Infiltrat (1/s)		Max Volume (m³)	Status	
	10080 min Winte	er 109.998	0.268		0.1	2.8	ОК	
		torm vent	Rain (mm/hr)	Flooded Volume (m³)		e-Peak ins)		
	10080 m	nin Winter	0.994	0.0		5552		

BSP Consulting Ltd		Page 4
12 Oxford Street	22-0541	
Nottingham	Stuart Avenue,	
NG1 5BG	Mansfield, Nottinghamshire	Micro
Date 03/04/2023	Designed by SCB	Drainage
File 22-0541_SOAKAWAY_P01-230	Checked by TG	Diamage
Micro Drainage	Source Control 2020.1.3	

Rainfall Details

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	20.000	Shortest Storm (mins) 15
Ratio R	0.400	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

Time Area Diagram

Total Area (ha) 0.013

Time	(mins)	Area
From:	To:	(ha)

0 4 0.013

©1982-2020 Innovyze

BSP Consulting Ltd		Page 5
12 Oxford Street	22-0541	
Nottingham	Stuart Avenue,	
NG1 5BG	Mansfield, Nottinghamshire	Micro
Date 03/04/2023	Designed by SCB	Drainage
File 22-0541_SOAKAWAY_P01-230	Checked by TG	Diamage
Micro Drainage	Source Control 2020.1.3	•

Model Details

Storage is Online Cover Level (m) 111.730

Trench Soakaway Structure

Infiltration Coefficient Base (m/hr)	0.00000 Trench Width (m)	2.0
Infiltration Coefficient Side (m/hr)	0.06120 Trench Length (m)	5.5
Safety Factor	1.0 Slope (1:X)	0.0
Porosity	0.95 Cap Volume Depth (m)	0.800
Invert Level (m)	109.730 Cap Infiltration Depth (m)	0.400

©1982-2020 Innovyze

BSP Consulting Ltd							Page 1
12 Oxford Street			22-0541				
Nottingham			Stuart A	venue,			
NG1 5BG				d, Notti	nghamshii	~e	Micco
Date 04/04/2023			Designed				— Micro
File 22-0541 ATTENUA			Checked	-			Drainage
—	RIION_FUI-				020 1 2		
Micro Drainage			source c	ontrol 2	020.1.3		
Summar	y of Resul	ts fo	or 100 ye	ear Retur	n Period	(+40%))
Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth		Overflow	Σ Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15 min Su	mmer 104.875	0.575	5 3.1	0.0	3.1	176.2	ОК
	mmer 104.967				3.1		0 K
60 min Su	mmer 105.052	0.752	2 3.1	0.0	3.1	285.5	O K
	mmer 105.126				3.1		ОК
	mmer 105.162				3.1		O K
	mmer 105.184				3.1		ОК
	mmer 105.206				3.1		O K
	mmer 105.217 mmer 105.221			0.0	3.1 3.1		ок ок
	mmer 105.221			0.0	3.1		0 K
	mmer 105.221				3.1		0 K
	mmer 105.187				3.1		ОК
	mmer 105.153				3.1		0 K
2880 min Su	mmer 105.124	0.824	1 3.1	0.0	3.1	337.0	O K
4320 min Su	mmer 105.067	0.767	7 3.1	0.0	3.1	295.9	O K
5760 min Su	mmer 105.009	0.709	3.1	0.0	3.1	257.2	O K
	mmer 104.949				3.1		O K
0000 -		0 575				176 2	ОК
8640 min Su 10000 min Su					3.1		
8640 min Su 10080 min Su				0.0	3.1 3.1		ОК
10080 min Su	mmer 104.806	0.506	5 3.1	0.0	3.1	140.1	0 К
10080 min Sun St	mmer 104.806	0.506 Rain	5 3.1		3.1	140.1	0 К
10080 min Sun St	mmer 104.806	0.506 Rain	5 3.1 Flooded 1	0.0 Discharge	3.1 Overflow I	140.1 'ime-Pea	0 К
10080 min Sur St Ex	mmer 104.806 corm J rent (m	0.506 Rain m/hr)	5 3.1 Flooded 1 Volume	0.0 Discharge Volume (m ³)	3.1 Overflow T Volume (m ³)	140.1 'ime-Pea	0 K K
10080 min Sur St Ex 15 m	mmer 104.806 corm 1 zent (m in Summer 12	0.506 Rain m/hr)	5 3.1 Flooded 1 Volume (m ³)	0.0 Discharge Volume	3.1 Overflow T Volume (m ³)	140.1 Sime-Peal (mins)	ок к
10080 min Sur St Ex 15 m 30 m	mmer 104.806 corm J rent (m in Summer 12 in Summer 8 in Summer 5	0.506 Rain m/hr) 7.917 3.984 2.595	5 3.1 Flooded 1 Volume (m ³) 0.0	0.0 Discharge Volume (m ³) 179.1 233.0 295.6	3.1 Overflow T Volume (m ³) 0.0 0.0 0.0	140.1 fime-Peak (mins) 2	ок к 1
10080 min Sur St Ex 15 m 30 m 60 m 120 m	nmer 104.806 corm I yent (m in Summer 12 in Summer 8 in Summer 5 in Summer 3	0.506 Rain m/hr) 7.917 3.984 2.595 1.881	5 3.1 Flooded 1 Volume (m ³) 0.0 0.0 0.0 0.0 0.0	0.0 Discharge Volume (m ³) 179.1 233.0 295.6 358.2	3.1 Overflow T Volume (m ³) 0.0 0.0 0.0 0.0 0.0	140.1 Time-Peal (mins) 2 4 7 13	ОК к 1 2 2 2
10080 min Sur St Ex 30 m 60 m 120 m 180 m	nmer 104.806 corm J rent (m in Summer 12 in Summer 8 in Summer 5 in Summer 3 in Summer 2	0.506 Rain m/hr) 7.917 3.984 2.595 1.881 3.498	<pre>5 3.1 Flooded 1 Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0</pre>	0.0 Discharge Volume (m ³) 179.1 233.0 295.6 358.2 395.9	3.1 Overflow T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	140.1 Time-Peal (mins) 2 4 7 13 19	ОК к 1 2 2 2 2 2
10080 min Sur St Ex 15 m 30 m 60 m 120 m 180 m 240 m	in Summer 104.806 in Summer 12 in Summer 12 in Summer 8 in Summer 5 in Summer 3 in Summer 1	0.506 Rain m/hr) 7.917 3.984 2.595 1.881 3.498 8.825	Flooded I Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 Discharge Volume (m ³) 179.1 233.0 295.6 358.2 395.9 422.7	3.1 Overflow T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	140.1 time-Peal (mins) 2 4 7 13 19 24	ОК к 2 2 2 3
10080 min Sur St Ex 15 m 30 m 60 m 120 m 180 m 240 m 360 m	nmer 104.806 torm J rent (m in Summer 12 in Summer 8 in Summer 5 in Summer 3 in Summer 3 in Summer 1 in Summer 1	0.506 Rain m/hr) 7.917 3.984 2.595 1.881 3.498 8.825 3.664	Flooded 1 Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Discharge Volume (m ³) 179.1 233.0 295.6 358.2 395.9 422.7 459.3	3.1 Overflow T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	140.1 Time-Peal (mins) 2 4 7 13 19 24: 36	ОК к 7 1 2 2 2 3 8 6
10080 min Sur St Ex 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m	in Summer 104.806 in Summer 12 in Summer 12 in Summer 8 in Summer 3 in Summer 3 in Summer 1 in Summer 1 in Summer 1	0.506 Rain m/hr) 7.917 3.984 2.595 1.881 3.498 8.825 3.664 0.886	Flooded 1 Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Discharge Volume (m ³) 179.1 233.0 295.6 358.2 395.9 422.7 459.3 482.9	3.1 Overflow T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	140.1 time-Peal (mins) 2 4 3 19 24 36 48	ОК к 7 1 2 2 2 3 6 6 6 6
10080 min Sur St Ex 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m	mmer 104.806 torm J rent (m in Summer 12 in Summer 12 in Summer 3 in Summer 3 in Summer 1 in Summer 1 in Summer 1 in Summer 1 in Summer 1 in Summer 1	0.506 Rain m/hr) 7.917 3.984 2.595 1.881 3.498 8.825 3.664 0.886 9.123	Flooded 1 Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Discharge Volume (m ³) 179.1 233.0 295.6 358.2 395.9 422.7 459.3 482.9 485.3	3.1 Overflow T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	140.1 Time-Peal (mins) 2 4 7 13 19 24 36 48 60	ОК к 7 1 0 0 0 0 0 3 8 6 6 6 4
10080 min Sur St Ex 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m	mmer 104.806 torm I yent (m in Summer 12 in Summer 8 in Summer 3 in Summer 3 in Summer 1 in Summer 1 in Summer 1 in Summer 1 in Summer 1 in Summer 1 in Summer 1	0.506 Rain m/hr) 7.917 3.984 2.595 1.881 3.498 8.825 3.664 0.886 9.123 7.893	Flooded I Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Discharge Volume (m ³) 179.1 233.0 295.6 358.2 395.9 422.7 459.3 482.9 485.3 483.2	3.1 Overflow T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	140.1 Time-Peal (mins) 2 4 7 13 19 24 36 48 60 72:	ОК к 7 1 0 0 0 0 3 6 6 6 6 4 2
10080 min Sur St Ex 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m	mmer 104.806 torm J rent (m in Summer 12 in Summer 8 in Summer 3 in Summer 3 in Summer 1 in Summer 1	0.506 Rain m/hr) 7.917 3.984 2.595 1.881 3.498 8.825 3.664 0.886 9.123	Flooded 1 Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Discharge Volume (m ³) 179.1 233.0 295.6 358.2 395.9 422.7 459.3 482.9 485.3	3.1 Overflow T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	140.1 Time-Peal (mins) 2 4 7 13 19 24 36 48 60	O K k 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0
10080 min Sur St Ex 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m	mmer 104.806 torm J yent (m in Summer 12 in Summer 8 in Summer 3 in Summer 3 in Summer 1 in Summer 1	0.506 Rain m/hr) 7.917 3.984 2.595 1.881 3.498 8.825 3.664 0.886 9.123 7.893 6.276	Flooded I Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Discharge Volume (m ³) 179.1 233.0 295.6 358.2 395.9 422.7 459.3 482.9 485.3 482.9 485.3 483.2 477.9	3.1 Overflow T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	140.1 fime-Peal (mins) 2 4 3 19 24 36 48 60 72 96	ОК к 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10080 min Sur St Ex 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m	mmer 104.806 torm J yent (m in Summer 12 in Summer 12 in Summer 3 in Summer 3 in Summer 1 in Summer 1	0.506 Rain m/hr) 7.917 3.984 2.595 1.881 3.498 8.825 3.664 0.886 9.123 7.893 6.276 4.537	Flooded P Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Discharge Volume (m ³) 179.1 233.0 295.6 358.2 395.9 422.7 459.3 482.9 485.3 482.9 485.3 483.2 477.9 466.0	3.1 Overflow T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	140.1 Time-Peal (mins) 2 4 3 19 24 36 48 60 72: 96 121:	O K 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0
10080 min Sur St Ex 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m	mmer 104.806 torm J rent (m in Summer 12 in Summer 8 in Summer 3 in Summer 3 in Summer 1 in Summer 1	0.506 Rain m/hr) 7.917 3.984 2.595 1.881 3.498 8.825 3.664 0.886 9.123 7.893 6.276 4.537 3.274	Flooded I Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Discharge Volume (m ³) 179.1 233.0 295.6 358.2 395.9 422.7 459.3 482.9 485.3 482.9 485.3 483.2 477.9 466.0 662.8 700.5 755.7	3.1 Overflow T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	140.1 fime-Peal (mins) 2 4 3 13 19 24 36 48 60 72 96 121 158 199 281	ОК к 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0
10080 min Sur St Ex 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m	mmer 104.806 torm J rent (m in Summer 12 in Summer 12 in Summer 3 in Summer 3 in Summer 1 in Summer 1	0.506 Rain m/hr) 7.917 3.984 2.595 1.881 3.498 8.825 3.664 0.886 9.123 7.893 6.276 4.537 3.274 2.595 1.868 1.478	Flooded I Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Discharge (m ³) 179.1 233.0 295.6 358.2 395.9 422.7 459.3 482.9 485.3 482.9 485.3 483.2 477.9 466.0 662.8 700.5 755.7 798.0	3.1 Overflow T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	140.1 Time-Peal (mins) 2 4 7 13 19 24 36 48 60 72: 96 121: 158: 199: 281: 364	O K 7 1 2 3 3 3 2 6 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
10080 min Sur St Ex 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m	mmer 104.806 torm J rent (m in Summer 12 in Summer 8 in Summer 8 in Summer 3 in Summer 1 in Summer 1	0.506 Rain m/hr) 7.917 3.984 2.595 1.881 3.498 8.825 3.664 0.886 9.123 7.893 6.276 4.537 3.274 2.595 1.868 1.478 1.232	Flooded I Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Discharge Volume (m ³) 179.1 233.0 295.6 358.2 395.9 422.7 459.3 482.9 485.3 483.2 477.9 466.0 662.8 700.5 755.7 798.0 831.3	3.1 Overflow T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	140.1 Time-Peal (mins) 2 4 2 4 3 1 9 2 4 3 6 48 60 72 96 121 158 199 281 364 446	O K 7 1 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0
10080 min Sur St Ex 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m	mmer 104.806 torm J yent (m in Summer 12 in Summer 12 in Summer 3 in Summer 3 in Summer 1 in Summer 1	0.506 Rain m/hr) 7.917 3.984 2.595 1.881 3.498 8.825 3.664 0.886 9.123 7.893 6.276 4.537 3.274 2.595 1.868 1.478	Flooded I Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 Discharge (m ³) 179.1 233.0 295.6 358.2 395.9 422.7 459.3 482.9 485.3 482.9 485.3 483.2 477.9 466.0 662.8 700.5 755.7 798.0	3.1 Overflow T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	140.1 Time-Peal (mins) 2 4 7 13 19 24 36 48 60 72: 96 121: 158: 199: 281: 364	ОК к 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0

BSP Consulting Ltd						Page 2
12 Oxford Street		22-0541				
Nottingham		Stuart .	Avenue,			
NG1 5BG		Mansfie	ld, Notti	nghamshi	re	Micco
Date 04/04/2023			d by SCB	9		— Micro
File 22-0541 ATTENUATIO	N DO1-	-	-			Drainage
	N_PU1	Checked	=	000 1 0		
Micro Drainage		Source	Control 2	020.1.3		
Summary of	Results f	for 100 y	vear Retur	n Period	(+40%)
Storm	Max Ma		Max	Max	Max	Status
Event	-		Overflow			
	(m) (m)) (l/s)	(1/s)	(1/s)	(m³)	
15 min Winter	104.913 0.63	13 3.1	0.0	3.1	197.8	O K
30 min Winter	105.012 0.7	12 3.1	0.0	3.1	258.9	O K
60 min Winter				3.1		
120 min Winter				3.1		
180 min Winter				3.1		
240 min Winter				3.1		
360 min Winter				3.1		
480 min Winter				3.1		
600 min Winter				3.1		
720 min Winter				3.1		
960 min Winter				3.1		
1440 min Winter				3.1		ОК
2160 min Winter				3.1		
2880 min Winter				3.1		
4320 min Winter				3.1		
5760 min Winter				3.1		
7200 min Winter				3.1		
8640 min Winter				3.1 3.1		
10080 min Winter	104.708 0.40	08 3.1	. 0.0	5.1	95.7	0 K
Storm	Rain	Flooded	Discharge	Overflow 1	'ime-Pea	ık
Event	(mm/hr)) Volume	Volume	Volume	(mins)	
		(m³)	(m³)	(m³)		
15 min W:	inter 127.91 [°]	7 0.0	200.4	0.0	2	6
	inter 83.98		243.3	0.0		1
	inter 52.59		331.0	0.0	7	
	inter 31.88		401.1	0.0	12	
	inter 23.49		442.9		18	
	inter 18.82		471.7	0.0	24	
360 min W:	inter 13.66	4 0.0	488.8	0.0	36	0
	inter 10.88		486.9	0.0	47	6
600 min W:	inter 9.12	3 0.0	484.9	0.0	59	2
720 min W:	inter 7.893	3 0.0	483.2	0.0	70	6
960 min W:	inter 6.27	6 0.0	480.4	0.0	93	0
1440 min W:	inter 4.53	7 0.0	477.5	0.0	135	6
2160 min W:	inter 3.27	4 0.0	742.3	0.0	169	2
2880 min W:	inter 2.59		784.4	0.0	216	
4320 min W:	inter 1.86	8 0.0	844.3	0.0	307	2
5760 min W:	inter 1.47	8 0.0	893.7	0.0	393	6
7200 min W:			931.0	0.0	483	2
		1 0 0	0.00 0	0.0	544	8
8640 min W:			962.3	0.0	544	0
8640 min W: 10080 min W:	inter 0.93		989.2	0.0	604	

BSP Consulting Ltd		Page 3
12 Oxford Street	22-0541	
Nottingham	Stuart Avenue,	
NG1 5BG	Mansfield, Nottinghamshire	Micro
Date 04/04/2023	Designed by SCB	Drainage
File 22-0541_ATTENUATION_P01	Checked by TG	Diamage
Micro Drainage	Source Control 2020.1.3	•

Rainfall Details

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	18.600	Shortest Storm (mins) 15
Ratio R	0.403	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

Time Area Diagram

Total Area (ha) 0.750

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.250	4	8	0.250	8	12	0.250

©1982-2020 Innovyze

12 Oxford Street Nottingham NG1 5BG Date 04/04/2023	⊾td									Pa	age 4
NG1 5BG Date 04/04/2023				2	22-054	11					
Date 04/04/2023	ngham Stuart Avenue,										
				1	lansf	ield, No	ottir	ghamsh	ire	N	Micro
File 22-0541 ATT	ידאוואייז	ION PO	1_		-	-					Drainac
Micro Drainage	DINOATI	1011_10	· ·			e Contro		20 1 3			
							01 20	20.1.0			
						Details		105 700			
		Storag				ver Level		105.700			
						d Struc					
/		1				(m) 104				_	
Depth (m) Ar									Depth (m) 1.400		
0.000	99.8	5 U	.500		499.2	1.00	0	898.0	1.400) 1.	198.1
	j	Hydro-	-Bra	ke®	Optim	um Outf	low	Control	<u>.</u>		
							HE-00	34-3100-	1000-3100		
				-	Head low (l				1.000		
			Des.	-	lush-F			C	alculated		
							imise		m storage		
					plicat			-	Surface		
			:	Sump .	Availa	ble			Yes	5	
					eter (84		
					Level				104.300		
	nimum O Suggest		-						100 1200		
	Suggest	.eu Maii.	nore	Diam	eter (1200)	
Control Point	ts	Head	(m)	Flow	(l/s)	Co	ntrol	Points	Hea	.d (m)	Flow (1/
Design Point (Calc	ulated)	1.	000		3.1			Kick-	-Flo®	0.623	2
Flu	sh-Flo™	۰ 0.	297		3.1	Mean Flo	ow ove	r Head F	Range	-	2
The hydrological Hydro-Brake® Opti Hydro-Brake Optim	imum as num® be	specif utilis	ied. ed t	Shc hen t	uld ar hese s	other ty torage r	pe of outin	control g calcul	device d ations wi	other ill be	than a invalida
Depth (m) Flow	(l/s)	Depth	(m)	Flow	(l/s)	Depth (n	n) Flo	w (l/s)	Depth (m	n) Flow	w (l/s)
	2.5		200		3.4	3.00		5.2	7.00		7.7
0.100	3.0		400		3.6	3.50		5.5	7.50		7.9
0.200	3.1		600		3.8	4.00		5.9	8.00		8.2
0.200 0.300	< ()		800		4.1	4.50		6.2	8.50		8.4
0.200 0.300 0.400	3.0	۷.	000		4.3 4.5	5.00 5.50		6.6 6.9	9.00 9.50		8.7 8.9
0.200 0.300 0.400 0.500	2.9	2			ч.Ј			0.9	9.50	,0	0.7
0.200 0.300 0.400 0.500 0.600	2.9 2.6	2.			4 6	6 00	0	71			
0.200 0.300 0.400 0.500	2.9	2.	200 400 600		4.6 4.8	6.00 6.50		7.1 7.4			
0.200 0.300 0.400 0.500 0.600 0.800	2.9 2.6 2.8	2.	400								

BSP Consulting Ltd		Page 5
12 Oxford Street	22-0541	
Nottingham	Stuart Avenue,	
NG1 5BG	Mansfield, Nottinghamshire	Micro
Date 04/04/2023	Designed by SCB	Drainage
File 22-0541_ATTENUATION_P01	Checked by TG	Diamage
Micro Drainage	Source Control 2020.1.3	

Orifice Overflow Control

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 105.300

Nottingham

12 Oxford Street Nottingham NG1 5BG

0345 413 4000

www.bsp-consulting.co.uk 🈏 in

5 Pride Point Drive Pride Park Derby DE24 8BX

Derby

0345 413 4000

Leicester

Floor 4 24 De Montfort St Leicester LE17GB

0345 413 4000

Sheffield

Smithy Wood House Smithy Wood Cres Sheffield **S8 0NU**

0345 413 4000

Constructionline

KITEMARK KM 718353 BS EN ISO 1965

BIM Design and Construction